Solveeit Logo

Question

Question: If \(\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }+\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{...

If tan(αβ)tanα+sin2γsin2α=1,\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }+\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1, then prove that tanγ\tan \gamma is geometric mean of tanα\tan \alpha and tanβ\tan \beta , i.e., tanαtanβ=tan2γ\tan \alpha \tan \beta ={{\tan }^{2}}\gamma .

Explanation

Solution

Hint: Use the identities such astanA=sinAcosA,sin(AB)=sin AcosBcosAsinB,cos(A+B)=cosAcosBsinAsinB\tan A=\dfrac{\sin A}{\cos A},sin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B,cos\left( A+B \right)=\cos A\cos B-\sin A\sin B in the question properly and wisely. Also try to simplify it whenever possible. At first try to convert all the terms in tan ratios to respective sin and cos ratios and after doing necessary calculation try to change the terms in cot ratios and finally use identity cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } to get the desired result.

“Complete step-by-step answer:”

We are given the following equation,
tan(αβ)tanα+sin2γsin2α=1\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }+\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1………….(i)
Now by moving tan(αβ)tanα\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha } from left hand side to right hand side of the equation (i) we get,
sin2γsin2α=1tan(αβ)tanα\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\tan \left( \alpha -\beta \right)}{\tan \alpha }………….(ii)
Now we are using the formula,
tanα=sinαcosα\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha } and tan(αβ)=sin(αβ)cos(αβ)\tan \left( \alpha -\beta \right)=\dfrac{\sin \left( \alpha -\beta \right)}{\cos \left( \alpha -\beta \right)}
And substituting in equation (ii) we get,
sin2γsin2α=1cosαsin(αβ)sinαcos(αβ)\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=1-\dfrac{\cos \alpha \sin \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}…………..(iii)
Now by taking LCM and further simplifying in right hand side of equation (iii) we get,
sin2γsin2α=sinαcos(αβ)cosα(αβ)sinαcos(αβ)\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \alpha \cos \left( \alpha -\beta \right)-\cos \alpha \left( \alpha -\beta \right)}{\sin \alpha \cos \left( \alpha -\beta \right)}…………….(iv)
Now in the equation (iv) we will use the identity sin(AB)=sin AcosBcosAsinBsin\left( A-B \right)\text{=sin }A\cos B\cos A\sin B and we will apply by replacing A by α\alpha and B by (αβ)\left( \alpha -\beta \right). We get,
sin2γsin2α=sinβsinαcos(αβ)\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\sin \alpha \cos \left( \alpha -\beta \right)}…………..(v)
On further simplification by multiplying sinα\sin \alpha to both the sides of equation (v) we get,
sin2γsin2α=sinβcos(αβ)\dfrac{{{\sin }^{2}}\gamma }{{{\sin }^{2}}\alpha }=\dfrac{\sin \beta }{\cos \left( \alpha -\beta \right)}
Now by using cross multiplication we get,
sin2γcos(αβ)=sinαsinβ{{\sin }^{2}}\gamma \cos \left( \alpha -\beta \right)=\sin \alpha \sin \beta ……………(vi)
Now we will use the identity cos(αβ)=cosαcosβ+sinαsinβ\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta in equation (vi), we get,
sin2γ(cosαcosβ+sinαsinβ)=sinαsinβsi{{n}^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)=\sin \alpha \sin \beta …………(vii)
Now dividing (sinαsinβsin2γ)\left( \sin \alpha \sin \beta {{\sin }^{2}}\gamma \right) throughout whole equation (vii) we get,
sin2γ(cosαcosβ+sinαsinβ)sin2γsinαsinβ=sinαsinβsin2γsinαsinβ\dfrac{{{\sin }^{2}}\gamma \left( \cos \alpha \cos \beta +\sin \alpha \sin \beta \right)}{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }=\dfrac{\sin \alpha \sin \beta }{{{\sin }^{2}}\gamma \sin \alpha \sin \beta }
(cosαcosβsinαsinβ+1)=(1sin2γ)\Rightarrow \left( \dfrac{\cos \alpha \cos \beta }{\sin \alpha \sin \beta }+1 \right)=\left( \dfrac{1}{{{\sin }^{2}}\gamma } \right)
\Rightarrow cotαcotβ+1=cosec2γ\cot \alpha cot\beta +1=cose{{c}^{2}}\gamma ……………. (viii)
Now let’s use the identity cosec2γ=1+cot2γ\cos e{{c}^{2}}\gamma =1+{{\cot }^{2}}\gamma in equation (viii), we get
1+cotαcotβ+1=1+cot2γ1+\cot \alpha \cot \beta +1=1+{{\cot }^{2}}\gamma
cotαcotβ=cot2γ\Rightarrow \cot \alpha \cot \beta ={{\cot }^{2}}\gamma ……………… (ix)
Now in equation (ix) we will use the identity
cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } whereθ\theta can be replace by α,β,γ\alpha ,\beta ,\gamma we get,
1tanα.1tanβ=1tan2γ tanαtanβ=tan2γ \begin{aligned} & \dfrac{1}{\tan \alpha }.\dfrac{1}{\tan \beta }=\dfrac{1}{{{\tan }^{2}}\gamma } \\\ & \therefore \tan \alpha \tan \beta ={{\tan }^{2}}\gamma \\\ \end{aligned}
Hence proved

Note: In these types of problems students should generally convert all the ‘tan’ ratios to ‘sin’ and ‘cos’ ones and then simplify using the identities.
Students should also learn the identities by heart and should be well versed how to and where to use them to get the desired results. They should also be careful while working every single step so as to avoid miscalculations.
Another approach is to expand tan(αβ)\tan \left( \alpha -\beta \right). This way will be lengthy and tedious.