Solveeit Logo

Question

Question: If \[\dfrac{{\tan 3\theta }}{{\tan \theta }} = 4\] , then \[\dfrac{{\sin 3\theta }}{{\sin \theta }}\...

If tan3θtanθ=4\dfrac{{\tan 3\theta }}{{\tan \theta }} = 4 , then sin3θsinθ\dfrac{{\sin 3\theta }}{{\sin \theta }} equals:
(A) 83\dfrac{8}{3}
(B) 45\dfrac{4}{5}
(C) 34\dfrac{3}{4}
(D) None of these

Explanation

Solution

According to the question, use the formula tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} and simplify to get the value of tanθ\tan \theta and calculate the value in terms of sin to find the required answer. Then again use the formula of sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta to find the value of sin3θsinθ\dfrac{{\sin 3\theta }}{{\sin \theta }}.

Formula used:
Here, we use the trigonometric formulas that is tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} and sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta .

Complete step by step solution:
As it is given, tan3θtanθ=4\dfrac{{\tan 3\theta }}{{\tan \theta }} = 4
Take tanθ\tan \theta on the right hand side in multiply.
So we get, tan3θ=4tanθ\tan 3\theta = 4\tan \theta
Here, we will use the formula of tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}
On substituting we get,
3tanθtan3θ13tan2θ=4tanθ\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} = 4\tan \theta
Taking tanθ\tan \theta common in numerator from right hand side,
tanθ(3tan2θ)13tan2θ=4tanθ\dfrac{{\tan \theta \left( {3 - {{\tan }^2}\theta } \right)}}{{1 - 3{{\tan }^2}\theta }} = 4\tan \theta
Cancelling tanθ\tan \theta from both right hand side and left hand side,
So we get,
3tan2θ13tan2θ=4\dfrac{{3 - {{\tan }^2}\theta }}{{1 - 3{{\tan }^2}\theta }} = 4
Taking denominator of left hand side to the right hand side,
3tan2θ=4(13tan2θ)3 - {\tan ^2}\theta = 4(1 - 3{\tan ^2}\theta )
3tan2θ=412tan2θ3 - {\tan ^2}\theta = 4 - 12{\tan ^2}\theta
After simplifying we get,
tan2θ+12tan2θ=43- {\tan ^2}\theta + 12{\tan ^2}\theta = 4 - 3
11tan2θ=111{\tan ^2}\theta = 1
So, tan2θ=111{\tan ^2}\theta = \dfrac{1}{{11}}
After taking square root on both side we get,
tanθ=111\tan \theta = \sqrt {\dfrac{1}{{11}}}
As we know 1=1\sqrt 1 = 1 and 11=11\sqrt {11} = \sqrt {11}
Substituting all the calculated values we get,
tanθ=111\tan \theta = \dfrac{1}{{\sqrt {11} }}
As we know tanθ=PerpendicularBase\tan \theta = \dfrac{{Perpendicular}}{{Base}}
So, we will draw a right angled triangle ΔABC\Delta ABC having angle θ\theta , base =11= \sqrt {11} and perpendicular = 1 as shown in figure.

As of now we will calculate Hypotenuse by using the Pythagoras theorem that is H2=P2+B2{H^2} = {P^2} + {B^2}
So, we will substitute all the values of P and B to get the value of H .
In right angled triangle ΔABC\Delta ABC
H2=12+(11)2{H^2} = {1^2} + {\left( {\sqrt {11} } \right)^2}
After calculating squares we get,
H2=1+11{H^2} = 1 + 11
H2=12{H^2} = 12
After taking square root on both side we get,
H=12=23H = \sqrt {12} = 2\sqrt 3
So, now we will calculate sinθ=PH\sin \theta = \dfrac{P}{H}
Putting P = 1 and H=23H = 2\sqrt 3 we get,
sinθ=123\sin \theta = \dfrac{1}{{2\sqrt 3 }}
As, according to the question we have to calculate sin3θsinθ\dfrac{{\sin 3\theta }}{{\sin \theta }}
Here, we use the formula of sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta
After substituting we get,
3sinθ4sin3θsinθ\Rightarrow \dfrac{{3\sin \theta - 4{{\sin }^3}\theta }}{{\sin \theta }}
Taking sinθ\sin \theta common from numerator and cancelling sinθ\sin \theta from numerator and denominator we get,
34sin2θ\Rightarrow 3 - 4{\sin ^2}\theta
Putting the value of sinθ=123\sin \theta = \dfrac{1}{{2\sqrt 3 }} in the above equation.
34(123)2\Rightarrow 3 - 4{\left( {\dfrac{1}{{2\sqrt 3 }}} \right)^2}
On simplifying we get,
313\Rightarrow 3 - \dfrac{1}{3}
By taking L.C.M we get,
83\Rightarrow \dfrac{8}{3}

So, option (A) 83\dfrac{8}{3} is correct.

Note:
To solve these types of questions, you must remember the trigonometric formulas and conversion of trigonometric values. For conversion you can simply use Pythagoras theorem to find the required value.