Solveeit Logo

Question

Question: If \(\dfrac{{\sin A}}{{\sin B}} = p{\text{ and }}\dfrac{{\cos A}}{{\cos B}} = q,{\text{then }}\tan A...

If sinAsinB=p and cosAcosB=q,then tanA andtanB.\dfrac{{\sin A}}{{\sin B}} = p{\text{ and }}\dfrac{{\cos A}}{{\cos B}} = q,{\text{then }}\tan A{\text{ and}}\tan B.

Explanation

Solution

In the given question we had given the value of 22 functions pp and qq which are trigonometric functions or they are in the form of trigonometric ratios. And we have to find out the value of other trigonometric ratios in terms of given ratios. Using identities of various trigonometric ratios we will find the value of asked trigonometric ratios.

Complete step-by-step answer:
In the question , we are given the values of P and q which are in the terms of trigonometric ratios but they are having different angles. As in the question, there are two angles used Given the value of pp and qq is
p=sinAsinB.............(1)p = \dfrac{{\operatorname{sin} A}}{{\operatorname{sin} B}}.............{\text{(1)}}
and P=cosAcosB..............(2)P = \dfrac{{\cos A}}{{\cos B}}..............{\text{(2)}}
From there, we have to find out the value of tan A and tan B.
It is clear that two parts are asked of us . Use will solve our problems after another.
From (1) p = SinASinB{\text{From (1) p = }}\dfrac{{\operatorname{Sin} A}}{{\operatorname{Sin} B}}
On cross multiplying it, we get
Sin A =  P sin B..............(3)Sin{\text{ }}A{\text{ }} = \;P{\text{ }}sin{\text{ }}B..............(3)
From (2) q = cosAcosB{\text{From (2) q = }}\dfrac{{\cos A}}{{\cos B}}
and on cross multiply it an get
cos A=qcosB..........(4)cos{\text{ }}A = q\cos B..........{\text{(4)}}
Also we know the identity
sin2A+cos2A=1\Rightarrow {\operatorname{sin} ^2}A + {\operatorname{cos} ^2}A = 1
On substituting the value of sinA\operatorname{sin} A and cosB\operatorname{cos} B from
(3) and (4){\text{(3) and (4)}} her, up will get
(psinB)2+(qcosB)2=1\Rightarrow {\left( {p\operatorname{sin} B} \right)^2} + {\left( {q\cos B} \right)^2} = 1
On squaring we get
P2sin2B+q2cos2B=1\Rightarrow {P^2}{\operatorname{sin} ^2}B + {q^2}{\cos ^2}B = 1
Dividing each and every term by Cos2B{\operatorname{Cos} ^2}B, use get
P2sin2Bcos2B+q2cos2Bcos2B=1cos2B\Rightarrow {P^2}\dfrac{{{{\operatorname{sin} }^2}B}}{{{{\operatorname{cos} }^2}B}} + {q^2}\dfrac{{{{\operatorname{cos} }^2}B}}{{{{\operatorname{cos} }^2}B}} = \dfrac{1}{{{{\operatorname{cos} }^2}B}}
  P2tan2B+q2(1)=secB\;{P^2}{\tan ^2}B + {q^2}(1) = \sec B
This is because we know   tan2B=sin2Bcos2B\;{\tan ^2}B = \dfrac{{{{\operatorname{sin} }^2}B}}{{{{\operatorname{cos} }^2}B}}
and sec2B=1cos2B{\operatorname{sec} ^2}B = \dfrac{1}{{{{\operatorname{cos} }^2}B}}
Therefore we get
  P2tan2B+q2=sec2B\;{P^2}{\tan ^2}B + {q^2} = {\sec ^2}B
Also use know Sec2B=1+tan2B.{\operatorname{Sec} ^2}B = 1 + {\tan ^2}B. So we get
  P2tan2B+q2=1+tan2B\; \Rightarrow {P^2}{\tan ^2}B + {q^2} = 1 + {\tan ^2}B
Taking all the terms to left hand side, We get
\Rightarrow $$$\;{P^2}{\tan ^2}B + {q^2} - 1 - {\tan ^2}B = 0$$ Taking $${\tan ^2}B$$common $$ \Rightarrow {\tan ^2}B({P^2} - 1) + {q^2} - 1 = 0$$ taking second & third term to right hand side \Rightarrow ({p^2} - 1){\tan ^2}B = 1 - {q^2}Alsotaking Also taking({p^2} - 1)toRighthandsideto Right hand side \tan B = \dfrac{{1 - q}}{{{p^2} - 1}}Takingsquarerootonbothsidesweget Taking square root on both sides we get \tan B = \pm \sqrt {\dfrac{{1 - {q^2}}}{{{p^2} - 1}}} Hence, we get the value of $$tan{\text{ }}B$$ Now we will find the value of $$tan{\text{ }}A$$ Dividing{\text{(3) and (4)}},weget, we get \Rightarrow \dfrac{{\operatorname{sin} A}}{{\operatorname{cos} A}} = \dfrac{{p\operatorname{sin} B}}{{q\operatorname{cos} B}}Whichimplies Which implies \tan A = \dfrac{p}{q}\tan B{\text{ }}..........{\text{(6)}}because because\dfrac{{\sin A}}{{\cos A}} = \tan ASo,onsubstitutingthevalueof So, on substituting the value of\tan Bfromfrom..........{\text{(5)}} \tan A = \pm \dfrac{p}{q}\sqrt {\dfrac{{1 - {q^2}}}{{{p^2} - 1}}} Whichisthevalueof Which is the value of\tan A$

Note: In the above question, we had used various trigonometric identities, which we applied to find out the values of tanA\tan Aand tanB\tan B. Where angels were different. That was AA and BB. Trigonometric identities used were sin2A+Cos2A=1{\sin ^2}A + {\operatorname{Cos} ^2}A = 1 .
tanA=sinAcosA,tan2A+1=sec2A\tan A = \dfrac{{\sin A}}{{\cos A}},{\tan ^2}A + 1 = {\sec ^2}A and after square root, we used the signs of positive and negative both.