Solveeit Logo

Question

Question: If \(\dfrac{{{\sin }^{4}}x}{2}+\dfrac{{{\cos }^{4}}x}{3}=\dfrac{1}{5}\), then (a)\({{\tan }^{2}}x=...

If sin4x2+cos4x3=15\dfrac{{{\sin }^{4}}x}{2}+\dfrac{{{\cos }^{4}}x}{3}=\dfrac{1}{5}, then
(a)tan2x=23{{\tan }^{2}}x=\dfrac{2}{3}
(b) sin8x8+cos8x27=1125\dfrac{{{\sin }^{8}}x}{8}+\dfrac{{{\cos }^{8}}x}{27}=\dfrac{1}{125}
(c) tan2x=13{{\tan }^{2}}x=\dfrac{1}{3}
(d) sin8x8+cos8x27=2125\dfrac{{{\sin }^{8}}x}{8}+\dfrac{{{\cos }^{8}}x}{27}=\dfrac{2}{125}

Explanation

Solution

We convert the given equation into an equation with only one unknown, that is, substitute cos4x{{\cos }^{4}}x with (1sin2x)2{{(1-{{\sin }^{2}}x)}^{2}}. Replace sin2x{{\sin }^{2}}x by aato obtain a quadratic equation in aa. Solve this equation to get the value of aa and thereby sin2x{{\sin }^{2}}x. Using different trigonometric relations, find the values of cos2x{{\cos }^{2}}x and tan2x{{\tan }^{2}}x to obtain the correct answer.
Use the following trigonometric identities:
sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x
1secx=cosx\dfrac{1}{\sec x}=\cos x
sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}x
Find the values according to the question and check for the option satisfying the obtained value(s).

Complete step-by-step answer:
We have,
sin4x2+cos4x3=15.................(1)\dfrac{{{\sin }^{4}}x}{2}+\dfrac{{{\cos }^{4}}x}{3}=\dfrac{1}{5}.................(1)
We know the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
On rearranging, we get,
cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x
Substituting for cos2x{{\cos }^{2}}x in equation (1), we obtain,
sin4x2+(1sin2x)23=15\dfrac{{{\sin }^{4}}x}{2}+\dfrac{{{(1-{{\sin }^{2}}x)}^{2}}}{3}=\dfrac{1}{5}
On taking LCM, we get,
3sin4x6+2(1sin2x)26=15\dfrac{3{{\sin }^{4}}x}{6}+\dfrac{2{{(1-{{\sin }^{2}}x)}^{2}}}{6}=\dfrac{1}{5}
On cross-multiplying,
5(3sin4x+2(1sin2x)2)=65\left( 3{{\sin }^{4}}x+2{{(1-{{\sin }^{2}}x)}^{2}} \right)=6
15sin4x+10(1sin2x)2=615{{\sin }^{4}}x+10{{(1-{{\sin }^{2}}x)}^{2}}=6
For ease of simplification, let us replace sin2x{{\sin }^{2}}xwith aa , which we can replace back later on.
15a2+10(1a)2=615{{a}^{2}}+10{{(1-a)}^{2}}=6
Using the algebraic identity (AB)2=A22AB+B2{{\left( A-B \right)}^{2}}={{A}^{2}}-2AB+{{B}^{2}} the equation becomes,
15a2+10(12a+a2)=615{{a}^{2}}+10(1-2a+{{a}^{2}})=6
15a2+1020a+10a2=615{{a}^{2}}+10-20a+10{{a}^{2}}=6
25a220a+4=025{{a}^{2}}-20a+4=0
We now have to solve the obtained quadratic equation.
We have three different methods to solve a quadratic equation namely factoring or splitting the middle term, completing the square method and the quadratic formula (Using discriminant). Here we are solving the quadratic equation using factoring method.
Using splitting the middle term method, as the name suggests we will split the middle term into two, whose sum is equal to the middle term and their product is equal to the product of the first and third term.
In the quadratic equation 25a220a+4=025{{a}^{2}}-20a+4=0, the product is equal to 100a2100{{a}^{2}} and the sum is equal to 20a-20a.
Hence, we split the equation as,
25a210a10a+4=025{{a}^{2}}-10a-10a+4=0
5a(5a2)2(5a2)=05a(5a-2)-2(5a-2)=0
(5a2)2=0{{(5a-2)}^{2}}=0
5a2=05a-2=0
a=25\therefore a=\dfrac{2}{5}
But a=sin2xa={{\sin }^{2}}x.
sin2x=25............(2)\therefore {{\sin }^{2}}x=\dfrac{2}{5}............(2)
We know the trigonometric identity sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
On rearranging, we get,
cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x
cos2x=125=35..................(3)\therefore {{\cos }^{2}}x=1-\dfrac{2}{5}=\dfrac{3}{5}..................(3)
On dividing equation (2) by equation (3), we get,
tan2x=(25)(35){{\tan }^{2}}x=\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{3}{5} \right)}
tan2x=23\therefore {{\tan }^{2}}x=\dfrac{2}{3}

So, the correct answer is “Option A”.

Note: Alternate method:
The equation sin4x2+cos4x3=15\dfrac{{{\sin }^{4}}x}{2}+\dfrac{{{\cos }^{4}}x}{3}=\dfrac{1}{5} can be solved in another method.
Dividing through by cos4x{{\cos }^{4}}x, the equation becomes,
sin4x2cos4x+13=15(cos4x)\dfrac{{{\sin }^{4}}x}{2{{\cos }^{4}}x}+\dfrac{1}{3}=\dfrac{1}{5\left( {{\cos }^{4}}x \right)}
We know that, sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x and 1secx=cosx\dfrac{1}{\sec x}=\cos x
Hence, the equation becomes,
tan4x2+13=sec4x5\dfrac{{{\tan }^{4}}x}{2}+\dfrac{1}{3}=\dfrac{{{\sec }^{4}}x}{5}
Substituting sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}x in the above equation, it becomes,
tan4x2+13=(1+tan2x)25\dfrac{{{\tan }^{4}}x}{2}+\dfrac{1}{3}=\dfrac{{{(1+{{\tan }^{2}}x)}^{2}}}{5}
On replacing tan2x{{\tan }^{2}}x by a, and solving the obtained quadratic equation, we get the value of aa and hence tan2x{{\tan }^{2}}x.