Solveeit Logo

Question

Question: If \[\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \th...

If sin3θsinθsin2(2θ)sinθ+sin2θcosθ=cosx\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x, then find the value of x=x =
A. 4θ4\theta
B. 2θ2\theta
C. θ\theta
D. 3θ3\theta

Explanation

Solution

We solve the fraction in the left hand side of the equation and write the term in function of cosine. Use the expansion of sin3θ\sin 3\theta and sin2θ\sin 2\theta to expand the terms in the fraction. Cancel common terms from fraction and again take common terms from possible terms in the fraction and solve using the identity sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta . Use the formula (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2} to break and group the terms in the numerator. Apply inverse trigonometric of the same function and calculate the value of ‘x’.

  • sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
  • sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta
    *sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta
    *(ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}

Complete step-by-step solution:
We are given that sin3θsinθsin2(2θ)sinθ+sin2θcosθ=cosx\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x................… (1)
We solve the left hand side of the equation
\RightarrowLHS=sin3θsinθsin2(2θ)sinθ+sin2θcosθ = \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }}
We can write sin2(2θ)=(sin2θ)2{\sin ^2}(2\theta ) = {\left( {\sin 2\theta } \right)^2}
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=sin3θsinθ(sin2θ)2sinθ+sin2θcosθ\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta {{(\sin 2\theta )}^2}}}{{\sin \theta + \sin 2\theta \cos \theta }}
Use the substitution of sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta in both numerator and denominator of the given fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=sin3θsinθ(2sinθcosθ)2sinθ+(2sinθcosθ)cosθ\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta {{(2\sin \theta \cos \theta )}^2}}}{{\sin \theta + \left( {2\sin \theta \cos \theta } \right)\cos \theta }}
Square the terms inside the bracket in the numerator of the given fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=sin3θsinθ(4sin2θcos2θ)sinθ+(2sinθcosθ)cosθ\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - \sin \theta (4{{\sin }^2}\theta {{\cos }^2}\theta )}}{{\sin \theta + \left( {2\sin \theta \cos \theta } \right)\cos \theta }}
Multiply the terms inside the bracket with the term outside the bracket in both numerator and denominator of the given fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=sin3θ4sin3θcos2θsinθ+2sinθcos2θ\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin 3\theta - 4{{\sin }^3}\theta {{\cos }^2}\theta }}{{\sin \theta + 2\sin \theta {{\cos }^2}\theta }}
Substitute the value of sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta in the numerator of the fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=3sinθ4sin3θ4sin3θcos2θsinθ+2sinθcos2θ\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3\sin \theta - 4{{\sin }^3}\theta - 4{{\sin }^3}\theta {{\cos }^2}\theta }}{{\sin \theta + 2\sin \theta {{\cos }^2}\theta }}
Take sinθ\sin \theta common from all the terms in both numerator and denominator of the fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=sinθ(34sin2θ4sin2θcos2θ)sinθ(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\sin \theta \left( {3 - 4{{\sin }^2}\theta - 4{{\sin }^2}\theta {{\cos }^2}\theta } \right)}}{{\sin \theta \left( {1 + 2{{\cos }^2}\theta } \right)}}
Cancel the common factor i.e.sinθ\sin \theta from both numerator and denominator of the given fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=(34sin2θ4sin2θcos2θ)(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\left( {3 - 4{{\sin }^2}\theta - 4{{\sin }^2}\theta {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}
Now we take4sin2θ- 4{\sin ^2}\thetacommon from the two terms in numerator of the fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=34sin2θ(1+cos2θ)(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4{{\sin }^2}\theta \left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}
Substitute the value of sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta in numerator of the fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=34(1cos2θ)(1+cos2θ)(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}
Since we know the identity(ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}, we can write (1cos2θ)(1+cos2θ)=1(cos2θ)2\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {({\cos ^2}\theta )^2}i.e. (1cos2θ)(1+cos2θ)=1cos4θ\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {\cos ^4}\theta
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=34(1cos4θ)(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4\left( {1 - {{\cos }^4}\theta } \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}
Multiply the terms inside the bracket with the term outside the bracket in numerator of the given fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=34+4cos4θ(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{3 - 4 + 4{{\cos }^4}\theta }}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=4cos4θ1(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{4{{\cos }^4}\theta - 1}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}
Using the identity (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2} we can write 4cos4θ1=(2cos2θ1)(2cos2θ+1)4{\cos ^4}\theta - 1 = \left( {2{{\cos }^2}\theta - 1} \right)\left( {2{{\cos }^2}\theta + 1} \right)
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=(2cos2θ1)(2cos2θ+1)(1+2cos2θ)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \dfrac{{\left( {2{{\cos }^2}\theta - 1} \right)\left( {2{{\cos }^2}\theta + 1} \right)}}{{\left( {1 + 2{{\cos }^2}\theta } \right)}}
Cancel the common factor i.e. (1+2cos2θ)\left( {1 + 2{{\cos }^2}\theta } \right) from both numerator and denominator of the given fraction
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=(2cos2θ1)\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \left( {2{{\cos }^2}\theta - 1} \right)
Use the identity (2cos2θ1)=cos2θ\left( {2{{\cos }^2}\theta - 1} \right) = \cos 2\theta in RHS
sin3θsinθsin2(2θ)sinθ+sin2θcosθ=cos2θ\Rightarrow \dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos 2\theta...............… (2)
Since we are given from equation (1)sin3θsinθsin2(2θ)sinθ+sin2θcosθ=cosx\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \theta }} = \cos x
Equate the values of fraction from equations (1) and (2)
cosx=cos2θ\Rightarrow \cos x = \cos 2\theta
Apply inverse cosine function on both sides of the equation
cos1(cosx)=cos1(cos2θ)\Rightarrow {\cos ^{ - 1}}\left( {\cos x} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right)
Cancel inverse function by the same function
x=2θ\Rightarrow x = 2\theta
\therefore The value of x is 2θ2\theta

\therefore Option B is correct.

Note: Many students get confused while grouping the factors(1cos2θ)(1+cos2θ)\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right)and write their multiplication using the identity as (1cos2θ)(1+cos2θ)=1(cos2θ)2\left( {1 - {{\cos }^2}\theta } \right)\left( {1 + {{\cos }^2}\theta } \right) = 1 - {\left( {{{\cos }^2}\theta } \right)^2}. Keep in mind we can write cos2θ=(cosθ)2{\cos ^2}\theta = {\left( {\cos \theta } \right)^2}and we know (mp)q=mp×q{\left( {{m^p}} \right)^q} = {m^{p \times q}}so the value of(cos2θ)2=((cosθ)2)2=cos4θ{\left( {{{\cos }^2}\theta } \right)^2} = {\left( {{{\left( {\cos \theta } \right)}^2}} \right)^2} = {\cos ^4}\theta . Also, many students write the fraction in terms of sine function which is wrong as then we will not be able to apply the inverse of cosine on both sides.