Question
Question: If \[\dfrac{{\sin 3\theta - \sin \theta {{\sin }^2}(2\theta )}}{{\sin \theta + \sin 2\theta \cos \th...
If sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=cosx, then find the value of x=
A. 4θ
B. 2θ
C. θ
D. 3θ
Solution
We solve the fraction in the left hand side of the equation and write the term in function of cosine. Use the expansion of sin3θ and sin2θ to expand the terms in the fraction. Cancel common terms from fraction and again take common terms from possible terms in the fraction and solve using the identity sin2θ=1−cos2θ. Use the formula (a−b)(a+b)=a2−b2 to break and group the terms in the numerator. Apply inverse trigonometric of the same function and calculate the value of ‘x’.
- sin2θ=2sinθcosθ
- sin3θ=3sinθ−4sin3θ
*sin2θ=1−cos2θ
*(a−b)(a+b)=a2−b2
Complete step-by-step solution:
We are given that sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=cosx................… (1)
We solve the left hand side of the equation
⇒LHS=sinθ+sin2θcosθsin3θ−sinθsin2(2θ)
We can write sin2(2θ)=(sin2θ)2
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=sinθ+sin2θcosθsin3θ−sinθ(sin2θ)2
Use the substitution of sin2θ=2sinθcosθ in both numerator and denominator of the given fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=sinθ+(2sinθcosθ)cosθsin3θ−sinθ(2sinθcosθ)2
Square the terms inside the bracket in the numerator of the given fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=sinθ+(2sinθcosθ)cosθsin3θ−sinθ(4sin2θcos2θ)
Multiply the terms inside the bracket with the term outside the bracket in both numerator and denominator of the given fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=sinθ+2sinθcos2θsin3θ−4sin3θcos2θ
Substitute the value of sin3θ=3sinθ−4sin3θ in the numerator of the fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=sinθ+2sinθcos2θ3sinθ−4sin3θ−4sin3θcos2θ
Take sinθ common from all the terms in both numerator and denominator of the fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=sinθ(1+2cos2θ)sinθ(3−4sin2θ−4sin2θcos2θ)
Cancel the common factor i.e.sinθ from both numerator and denominator of the given fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(1+2cos2θ)(3−4sin2θ−4sin2θcos2θ)
Now we take−4sin2θcommon from the two terms in numerator of the fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(1+2cos2θ)3−4sin2θ(1+cos2θ)
Substitute the value of sin2θ=1−cos2θin numerator of the fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(1+2cos2θ)3−4(1−cos2θ)(1+cos2θ)
Since we know the identity(a−b)(a+b)=a2−b2, we can write (1−cos2θ)(1+cos2θ)=1−(cos2θ)2i.e. (1−cos2θ)(1+cos2θ)=1−cos4θ
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(1+2cos2θ)3−4(1−cos4θ)
Multiply the terms inside the bracket with the term outside the bracket in numerator of the given fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(1+2cos2θ)3−4+4cos4θ
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(1+2cos2θ)4cos4θ−1
Using the identity (a−b)(a+b)=a2−b2 we can write 4cos4θ−1=(2cos2θ−1)(2cos2θ+1)
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(1+2cos2θ)(2cos2θ−1)(2cos2θ+1)
Cancel the common factor i.e. (1+2cos2θ) from both numerator and denominator of the given fraction
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=(2cos2θ−1)
Use the identity (2cos2θ−1)=cos2θ in RHS
⇒sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=cos2θ...............… (2)
Since we are given from equation (1)sinθ+sin2θcosθsin3θ−sinθsin2(2θ)=cosx
Equate the values of fraction from equations (1) and (2)
⇒cosx=cos2θ
Apply inverse cosine function on both sides of the equation
⇒cos−1(cosx)=cos−1(cos2θ)
Cancel inverse function by the same function
⇒x=2θ
∴The value of x is 2θ
∴Option B is correct.
Note: Many students get confused while grouping the factors(1−cos2θ)(1+cos2θ)and write their multiplication using the identity as (1−cos2θ)(1+cos2θ)=1−(cos2θ)2. Keep in mind we can write cos2θ=(cosθ)2and we know (mp)q=mp×qso the value of(cos2θ)2=((cosθ)2)2=cos4θ. Also, many students write the fraction in terms of sine function which is wrong as then we will not be able to apply the inverse of cosine on both sides.