Solveeit Logo

Question

Question: If \[\dfrac{\pi }{2} < \theta < \dfrac{{3\pi }}{2}\], then the value of \[\sqrt {4{{\cos }^4}\theta ...

If π2<θ<3π2\dfrac{\pi }{2} < \theta < \dfrac{{3\pi }}{2}, then the value of 4cos4θ+sin22θ+4cotθcos2(π4θ2)\sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) is
(A) 2sinθ2\sin \theta
(B) 2sinθ- 2\sin \theta
(C) 2cotθ2\cot \theta
(D) 2cotθ- 2\cot \theta

Explanation

Solution

In this question, we have to evaluate the value of a given particular in the given region.
We need to first put the trigonometric formulas to bring it in a shorter form so that we can get a solution, then getting the square root of the square of the cosine function in given region we will get the negative of cosine then putting the algebraic and trigonometric formulas we will get the solution.

Formula used: Here we have used the algebraic formula,
(a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}.
The trigonometric formulas we have used,
cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}

Complete step-by-step answer:
We need to find out the values of 4cos4θ+sin22θ+4cotθcos2(π4θ2)\sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right).
Now,4cos4θ+sin22θ+4cotθcos2(π4θ2)\sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
Using the trigonometric formula,cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B,we get,
4cos4θ+4sin2θcos2θ+4cotθ(cosπ4cosθ2+sinπ4sinθ2)2\Rightarrow \sqrt {4{{\cos }^4}\theta + 4{{\sin }^2}\theta {{\cos }^2}\theta } + 4\cot \theta {\left( {\cos \dfrac{\pi }{4}\cos \dfrac{\theta }{2} + \sin \dfrac{\pi }{4}\sin \dfrac{\theta }{2}} \right)^2}
Putting the value of cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} , sinπ4=12\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}, we get,
4cos4θ+4sin2θcos2θ+4cotθ(12cosθ2+12sinθ2)2\Rightarrow \sqrt {4{{\cos }^4}\theta + 4{{\sin }^2}\theta {{\cos }^2}\theta } + 4\cot \theta {\left( {\dfrac{1}{{\sqrt 2 }}\cos \dfrac{\theta }{2} + \dfrac{1}{{\sqrt 2 }}\sin \dfrac{\theta }{2}} \right)^2}
Since, π2<θ<3π2\dfrac{\pi }{2} < \theta < \dfrac{{3\pi }}{2}, θ\theta is in second or third quadrant so the value of cosθ\cos \theta is negative.
Thus, cos2θ=cosθ\sqrt {{{\cos }^2}\theta } = - \cos \theta , we get,
2cosθcos2θ+sin2θ+4cotθ12(cosθ2+sinθ2)2\Rightarrow - 2\cos \theta \sqrt {{{\cos }^2}\theta + {{\sin }^2}\theta } + 4\cot \theta \dfrac{1}{2}{\left( {\cos \dfrac{\theta }{2} + \sin \dfrac{\theta }{2}} \right)^2}
Using the algebraic formula,(a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}
2cosθ+2cotθ(cos2θ2+sin2θ2+2cosθ2sinθ2)\Rightarrow - 2\cos \theta + 2\cot \theta \left( {{{\cos }^2}\dfrac{\theta }{2} + {{\sin }^2}\dfrac{\theta }{2} + 2\cos \dfrac{\theta }{2}\sin \dfrac{\theta }{2}} \right)
Using the trigonometric formula, sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
2cosθ+2cotθ(1+sinθ)\Rightarrow - 2\cos \theta + 2\cot \theta \left( {1 + \sin \theta } \right)
Using the formula, cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
2cosθ+2cotθ+2cosθsinθsinθ\Rightarrow - 2\cos \theta + 2\cot \theta + 2\dfrac{{\cos \theta }}{{\sin \theta }}\sin \theta
Cancelling the term sinθ\sin \theta in numerator and denominator we get,
2cosθ+2cotθ+2cosθ\Rightarrow - 2\cos \theta + 2\cot \theta + 2\cos \theta
Simplifying we get,
2cotθ\Rightarrow 2\cot \theta
Hence we get, 4cos4θ+sin22θ+4cotθcos2(π4θ2)=2cotθ\sqrt {4{{\cos }^4}\theta + {{\sin }^2}2\theta } + 4\cot \theta {\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 2\cot \theta in π2<θ<3π2\dfrac{\pi }{2} < \theta < \dfrac{{3\pi }}{2}.

\therefore Thus (C) is the correct option.

Note:

In the first quadrant (0 to π2)\left( {0{\text{ to }}\dfrac{\pi }{2}} \right) all trigonometric functions are positive, in second quadrant (π2 to π)\left( {\dfrac{\pi }{2}{\text{ to }}\pi } \right) only sine function is positive, and in third quadrant (π to 3π2)\left( {\pi {\text{ to }}\dfrac{{3\pi }}{2}} \right) tangent function is positive, in fourth quadrant (3π2 to 2π)\left( {\dfrac{{3\pi }}{2}{\text{ to }}2\pi } \right) cosine functions are positive.
Thus if π2<θ<3π2\dfrac{\pi }{2} < \theta < \dfrac{{3\pi }}{2} then θ\theta lies between second and third quadrant where the value of cosine function is negative. Therefore we get the square root of the cosine square function as negative of the cosine function.
We know that cotangent function is given by dividing cosine function by sine function.