Solveeit Logo

Question

Question: If \(\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11\) then n satisfies the equation A.\({n^2} +...

If n+2C6n2P2=11\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11 then n satisfies the equation
A.n2+n110=0{n^2} + n - 110 = 0
B.n2+2n80=0{n^2} + 2n - 80 = 0
C.n2+3n108=0{n^2} + 3n - 108 = 0
D.n2+5n84=0{n^2} + 5n - 84 = 0

Explanation

Solution

By using the formula of permutation nPr=n!(nr)!{}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}and combination nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}in the given expression we can find the value of n. By substituting that value in the given options we can find the equation satisfied by that value.

Complete step-by-step answer:
We are given that n+2C6n2P2=11\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11
We know the formula of nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}
Here n = n+2 and r = 6
We get ,
n+2C6=(n+2)!6!(n+26)! n+2C6=(n+2)(n+1)n(n1)(n2)(n3)(n4)!654321(n4)! n+2C6=(n+2)(n+1)n(n1)(n2)(n3)654321  \Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)!}}{{6!(n + 2 - 6)!}} \\\ \Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)(n - 4)!}}{{6*5*4*3*2*1*(n - 4)!}} \\\ \Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}} \\\
We know the formula of nPr=n!(nr)!{}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}
Here n = n – 2 and r = 2
n2P2=(n2)!(n22)! n2P2=(n2)(n3)(n4)!(n4)! n+2C6=(n2)(n3)  \Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)!}}{{(n - 2 - 2)!}} \\\ \Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)(n - 3)(n - 4)!}}{{(n - 4)!}} \\\ \Rightarrow {}^{n + 2}{C_6} = (n - 2)(n - 3) \\\
Substituting the values in n+2C6n2P2=11\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11
(n+2)(n+1)n(n1)(n2)(n3)654321(n2)(n3)=11 (n+2)(n+1)n(n1)654321=11 (n+2)(n+1)n(n1)=11235432 (n+2)(n+1)n(n1)=111098  \Rightarrow \dfrac{{\dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}}}}{{(n - 2)(n - 3)}} = 11 \\\ \Rightarrow \dfrac{{(n + 2)(n + 1)n(n - 1)}}{{6*5*4*3*2*1}} = 11 \\\ \Rightarrow (n + 2)(n + 1)n(n - 1) = 11*2*3*5*4*3*2 \\\ \Rightarrow (n + 2)(n + 1)n(n - 1) = 11*10*9*8 \\\
From this we get that n = 9
Now lets substitute this value of n in the options given
n2+n110=0{n^2} + n - 110 = 0
92+9110=81+9110=90110=20\Rightarrow {9^2} + 9 - 110 = 81 + 9 - 110 = 90 - 110 = - 20
Therefore the value of n does not satisfy this equation
n2+2n80=0{n^2} + 2n - 80 = 0
92+2(9)80=81+1880=9980=19\Rightarrow {9^2} + 2(9) - 80 = 81 + 18 - 80 = 99 - 80 = 19
Therefore the value of n does not satisfy this equation
n2+3n108=0{n^2} + 3n - 108 = 0
92+3(9)108=81+27108=108108=0\Rightarrow {9^2} + 3(9) - 108 = 81 + 27 - 108 = 108 - 108 = 0
From this we get that the value of n satisfies this equation
Therefore the correct option is C

Note: Permutations and combinations, the various ways in which objects from a set may be selected, generally without replacement, to form subsets. This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.