Solveeit Logo

Question

Question: If \( \dfrac{\log x}{l+m-2n}=\dfrac{\log y}{m+n-2l}=\dfrac{\log z}{n+l-2m} \) , then the value of \(...

If logxl+m2n=logym+n2l=logzn+l2m\dfrac{\log x}{l+m-2n}=\dfrac{\log y}{m+n-2l}=\dfrac{\log z}{n+l-2m} , then the value of x2y2z2{{x}^{2}}{{y}^{2}}{{z}^{2}} will be:
A. 0
B. 1
C. 2
D. 3

Explanation

Solution

Hint: We can solve this question by finding separate values of x , y and z in terms of log by equating a given equation to any constant. Then by solving all the equations of the constant we will arrive at the value of xyz.

Complete step-by-step answer:
Given equation is
logxl+m2n=logym+n2l=logzn+l2m\dfrac{\log x}{l+m-2n}=\dfrac{\log y}{m+n-2l}=\dfrac{\log z}{n+l-2m}
We can let it equal to k
So we can write equation as
logxl+m2n=logym+n2l=logzn+l2m=k\dfrac{\log x}{l+m-2n}=\dfrac{\log y}{m+n-2l}=\dfrac{\log z}{n+l-2m}=k
Now we can write:
logxl+m2n=k\Rightarrow \dfrac{\log x}{l+m-2n}=k
logx=k(l+m2n)\Rightarrow \log x=k(l+m-2n) ……………………………………(i)
logym+n2l=k\Rightarrow \dfrac{\log y}{m+n-2l}=k
logy=k(m+n2l)\Rightarrow \log y=k(m+n-2l) …………………………………………..(ii)
logzn+l2m=k\Rightarrow \dfrac{\log z}{n+l-2m}=k
logz=k(n+l2m)\Rightarrow \log z=k(n+l-2m) ……………………………………………(iii)
On adding equation (i),(ii) and (iii)
logx+logy+logz=k(l+m2n)+k(m+n2l)+k(n+l2m)\Rightarrow \log x+\log y+\log z=k(l+m-2n)+k(m+n-2l)+k(n+l-2m)
logx+logy+logz=kl+km2kn+km+kn2kl+kn+kl2km\Rightarrow \log x+\log y+\log z=kl+km-2kn+km+kn-2kl+kn+kl-2km
logx+logy+logz=0\Rightarrow \log x+\log y+\log z=0
log(xyz)=0\Rightarrow \log (xyz)=0 \left\\{ \because \log a+\log b+\log c=\log (abc) \right\\}
According to base change formula if we have logax=b{{\log }_{a}}x=b then we can write x=abx={{a}^{b}}
Hence we can write above equation as:
xyz=100\Rightarrow xyz={{10}^{0}}
xyz=1\Rightarrow xyz=1
On squaring both side
(xyz)2=12\Rightarrow {{(xyz)}^{2}}={{1}^{2}}
x2y2z2=1\Rightarrow {{x}^{2}}{{y}^{2}}{{z}^{2}}=1
Hence option B is correct.

Note:In this question we need to remember that all equations are equal. So we will let all equations equal to the same variable. Also if any terms has exponent 0 then the value of term is equal to 1 always.