Solveeit Logo

Question

Question: If \(\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac...

If (secθ+tanθ)(secθtanθ)=20979\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79}, find the value of θ\theta .

Explanation

Solution

Hint:Rationalize the L.H.S by multiplying it with the conjugate of denominator given by: (secθ+tanθ)(secθ+tanθ)\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta +\tan \theta \right)}. Use the trigonometric identity: sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 to simplify the denominator of L.H.S. Now, convert the given trigonometric functions into its sine and cosine form by using the relations: secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }. Use the identity: cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta to get a quadratic equation in sinθ\sin \theta . Solve this equation to find the general solution. Use the relation: if sinx=a\sin x=a, then its general solution is given by x=nπ+(1)nsin1(a)x=n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( a \right), where ‘n’ is any integer. Remember that θ\theta cannot be any odd multiple of π2\dfrac{\pi }{2} because at that value tangent and secant are undefined.

Complete step-by-step answer:
We have been provided with the equation: (secθ+tanθ)(secθtanθ)=20979\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79}.
Rationalizing the denominator in the L.H.S, we get,
(secθ+tanθ)(secθtanθ)×(secθ+tanθ)(secθ+tanθ)=20979 (secθ+tanθ)2(secθtanθ)(secθ+tanθ)=20979 (secθ+tanθ)2(sec2θtan2θ)=20979 \begin{aligned} & \dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}\times \dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta +\tan \theta \right)}=\dfrac{209}{79} \\\ & \Rightarrow \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{2}}}{\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)}=\dfrac{209}{79} \\\ & \Rightarrow \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{2}}}{\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)}=\dfrac{209}{79} \\\ \end{aligned}
Using the identity: sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1, we get,
(secθ+tanθ)2=20979{{\left( \sec \theta +\tan \theta \right)}^{2}}=\dfrac{209}{79}
Now, using the relations: secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }, we get,
(1cosθ+sinθcosθ)2=20979 (1+sinθcosθ)2=20979 (1+sin2θ+2sinθcos2θ)=20979 \begin{aligned} & {{\left( \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta } \right)}^{2}}=\dfrac{209}{79} \\\ & \Rightarrow {{\left( \dfrac{1+\sin \theta }{\cos \theta } \right)}^{2}}=\dfrac{209}{79} \\\ & \Rightarrow \left( \dfrac{1+{{\sin }^{2}}\theta +2\sin \theta }{{{\cos }^{2}}\theta } \right)=\dfrac{209}{79} \\\ \end{aligned}
By cross-multiplication, we have,
79+79sin2θ+158sinθ=209cos2θ79+79{{\sin }^{2}}\theta +158\sin \theta =209{{\cos }^{2}}\theta
Using the identity: sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1, we get,
79+79sin2θ+158sinθ=209(1sin2θ) 79+79sin2θ+158sinθ=209209sin2θ 288sin2θ+158sinθ130=0 2(144sin2θ+79sinθ65)=0 (144sin2θ+79sinθ65)=0 \begin{aligned} & 79+79{{\sin }^{2}}\theta +158\sin \theta =209\left( 1-{{\sin }^{2}}\theta \right) \\\ & \Rightarrow 79+79{{\sin }^{2}}\theta +158\sin \theta =209-209{{\sin }^{2}}\theta \\\ & \Rightarrow 288{{\sin }^{2}}\theta +158\sin \theta -130=0 \\\ & \Rightarrow 2\left( 144{{\sin }^{2}}\theta +79\sin \theta -65 \right)=0 \\\ & \Rightarrow \left( 144{{\sin }^{2}}\theta +79\sin \theta -65 \right)=0 \\\ \end{aligned}
This is a quadratic equation in sinθ\sin \theta . Splitting the middle term, we get,
144sin2θ+144sinθ65sinθ65=0 144sinθ(sinθ+1)65(sinθ+1)=0 (144sinθ65)(sinθ+1)=0 \begin{aligned} & 144{{\sin }^{2}}\theta +144\sin \theta -65\sin \theta -65=0 \\\ & \Rightarrow 144\sin \theta \left( \sin \theta +1 \right)-65\left( \sin \theta +1 \right)=0 \\\ & \Rightarrow \left( 144\sin \theta -65 \right)\left( \sin \theta +1 \right)=0 \\\ \end{aligned}
Equating each term equal to 0, we get,
(144sinθ65)=0 or (sinθ+1)=0 sinθ=65144 or sinθ=1 \begin{aligned} & \left( 144\sin \theta -65 \right)=0\text{ or }\left( \sin \theta +1 \right)=0 \\\ & \Rightarrow \sin \theta =\dfrac{65}{144}\text{ or }\sin \theta =-1 \\\ \end{aligned}
Now, we know that the value of sinθ\sin \theta is 1 or -1, when the angle is an odd multiple of π2\dfrac{\pi }{2}. But the functions: tanθ\tan \theta and secθ\sec \theta are undefined for such angles. Therefore the only solution will be sinθ=65144\sin \theta =\dfrac{65}{144}.
Now, we have to find a general solution.
If sinx=a\sin x=a, then its general solution is given by x=nπ+(1)nsin1(a)x=n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( a \right), where ‘n’ is any integer. So, the general solution of sinθ=65144\sin \theta =\dfrac{65}{144} is given as:
θ=nπ+(1)nsin1(65144)\theta =n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( \dfrac{65}{144} \right), where ‘n’ is any integer.

Note: One may note that we have to find the solution according to the equation: (secθ+tanθ)(secθtanθ)=20979\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79} and not its simplified form. So, wherever this equation is undefined, we have to reject that value from the obtained solution. That is why, sinθ=1\sin \theta =-1 is not considered because it will give such values of θ\theta , at which secant and tangent functions are undefined.