Solveeit Logo

Question

Question: If \( \dfrac{dy}{dx}+x\sin 2y={{x}^{3}}co{{s}^{2}}y,y(0)=0 \) , then \( y(1) \) is equal to: A. \(...

If dydx+xsin2y=x3cos2y,y(0)=0\dfrac{dy}{dx}+x\sin 2y={{x}^{3}}co{{s}^{2}}y,y(0)=0 , then y(1)y(1) is equal to:
A. tan1e{{\tan }^{-1}}e
B. tan11e{{\tan }^{-1}}\dfrac{1}{e}
C. tan1e2{{\tan }^{-1}}\dfrac{e}{2}
D. tan112e{{\tan }^{-1}}\dfrac{1}{2e}

Explanation

Solution

Steps to solve a First Order Linear Differential Equation:
Convert into the standard form dydx+P×y=Q\dfrac{dy}{dx}+P\times y=Q , where P and Q are constants or functions of x only.
Find the Integrating Factor (F) by using the formula: F=eP  dxF={{e}^{\int{P}\;dx}} .
Write the solution using the formula: y×F=Q×F dx+Cy\times F=\int{Q\times F\ dx}+C where C is the constant of integration.
Find the value of C by using the values of y(0)y(0) , y(1)y(1) etc.
Make an appropriate substitution to get rid of the dependent variable (y) from all the other terms of the given differential equation.
Simplify the solution obtained using an appropriate substitution and integrating by parts

Complete step-by-step answer:
The given differential equation dydx+xsin2y=x3cos2y\dfrac{dy}{dx}+x\sin 2y={{x}^{3}}co{{s}^{2}}y is not in the standard form yet.
We divide both sides by cos2y{{\cos }^{2}}y and expand sin2y=2sinycosy\sin 2y=2\sin y\cos y , to get:
1cos2ydydx+x×2sinycosycos2y=x3\dfrac{1}{co{{s}^{2}}y}\dfrac{dy}{dx}+\dfrac{x\times 2\sin y\cos y}{co{{s}^{2}}y}={{x}^{3}}
sec2ydydx+2xtany=x3{{\sec }^{2}}y\dfrac{dy}{dx}+2x\tan y={{x}^{3}}
Substituting tany=z\tan y=z , we have sec2ydy=dz{{\sec }^{2}}ydy=dz .
dzdx+2x×z=x3\dfrac{dz}{dx}+2x\times z={{x}^{3}}
Comparing the above differential equation with the standard form dydx+P×y=Q\dfrac{dy}{dx}+P\times y=Q , we can say that:
P=2xP=2x and Q=x3Q={{x}^{3}} .
∴ The solution is:
z×e2x  dx=x3×e2x  dx dx+Cz\times {{e}^{\int{2x}\;dx}}=\int{{{x}^{3}}\times {{e}^{\int{2x}\;dx}}\ dx}+C
Using xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} , we get:
z×e2×x22=x3×e2×x22 dx+Cz\times {{e}^{2\times \dfrac{{{x}^{2}}}{2}}}=\int{{{x}^{3}}\times {{e}^{2\times \dfrac{{{x}^{2}}}{2}}}\ dx}+C
z×ex2=x2×x×ex2 dx+Cz\times {{e}^{{{x}^{2}}}}=\int{{{x}^{2}}\times x\times {{e}^{{{x}^{2}}}}\ dx}+C
Let's substitute x2=t{{x}^{2}}=t , then 2xdx=dt2xdx=dt .
z×et=12tet dt+Cz\times {{e}^{t}}=\dfrac{1}{2}\int{t{{e}^{t}}\ dt}+C
Integrating by parts, this is equal to:
z×et=12tet dt+Cz\times {{e}^{t}}=\dfrac{1}{2}\int{t{{e}^{t}}\ dt}+C
z×et=12[tet dt1×(etdt)dt]+Cz\times {{e}^{t}}=\dfrac{1}{2}\left[ t\int{{{e}^{t}}\ dt}-\int{1\times \left( \int{{{e}^{t}}dt} \right)dt} \right]+C
z×et=12(tetet)+Cz\times {{e}^{t}}=\dfrac{1}{2}\left( t{{e}^{t}}-{{e}^{t}} \right)+C
Dividing by et{{e}^{t}} , we get:
z=12(t1)+Cetz=\dfrac{1}{2}\left( t-1 \right)+\dfrac{C}{{{e}^{t}}}
Back substituting for t=x2t={{x}^{2}} and z=tanyz=\tan y , we get:
tany=12(x21)+Cex2\tan y=\dfrac{1}{2}\left( {{x}^{2}}-1 \right)+\dfrac{C}{{{e}^{{{x}^{2}}}}}
y=tan1[12(x21)+Cex2]y={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( {{x}^{2}}-1 \right)+\dfrac{C}{{{e}^{{{x}^{2}}}}} \right]
We are given that y(0)=0y(0)=0 . Putting x=0x=0 and equating it to 0, we get:
0=tan1[12(01)+Ce0]0={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( 0-1 \right)+\dfrac{C}{{{e}^{0}}} \right]
tan0=12+C1\tan 0=\dfrac{-1}{2}+\dfrac{C}{1}
C=12C=\dfrac{1}{2}
Therefore, y(1)y(1) will be:
y(1)=tan1[12(121)+12e12]y(1)={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( {{1}^{2}}-1 \right)+\dfrac{1}{2{{e}^{{{1}^{2}}}}} \right]
y(1)=tan1(12e)y(1)={{\tan }^{-1}}\left( \dfrac{1}{2e} \right)
The correct answer is D. tan112e{{\tan }^{-1}}\dfrac{1}{2e} .

Note: First Order Linear Differential Equation:
A differential equation of the form dydx+P×y=Q\dfrac{dy}{dx}+P\times y=Q , where P and Q are constants or functions of x only, is known as a first order linear differential equation.
Integration by Parts:
f(x)g(x)dx= !! !! f(x) !! !!  !! !! g(x)dx !! !! [f(x) !! !! g(x)dx]dx\int{f}(x)g(x)dx=\text{ }\\!\\!~\\!\\!\text{ }f(x)\text{ }\\!\\!~\\!\\!\text{ }\int{\text{ }\\!\\!~\\!\\!\text{ }}g(x)dx-\int{\text{ }\\!\\!~\\!\\!\text{ }}[{f}'(x)\int{\text{ }\\!\\!~\\!\\!\text{ }}g(x)dx]dx .
Integration by substitution:
If we substitute x=f(t)x=f(t) , then dx=f(t)dtdx={f}'(t)dt and f(x)dx= !! !! f[f(t)]f(t)dt\int{f}(x)dx=\text{ }\\!\\!~\\!\\!\text{ }\int{f}[f(t)]{f}'(t)dt .