Question
Question: If \( \dfrac{dy}{dx}+x\sin 2y={{x}^{3}}co{{s}^{2}}y,y(0)=0 \) , then \( y(1) \) is equal to: A. \(...
If dxdy+xsin2y=x3cos2y,y(0)=0 , then y(1) is equal to:
A. tan−1e
B. tan−1e1
C. tan−12e
D. tan−12e1
Solution
Steps to solve a First Order Linear Differential Equation:
Convert into the standard form dxdy+P×y=Q , where P and Q are constants or functions of x only.
Find the Integrating Factor (F) by using the formula: F=e∫Pdx .
Write the solution using the formula: y×F=∫Q×F dx+C where C is the constant of integration.
Find the value of C by using the values of y(0) , y(1) etc.
Make an appropriate substitution to get rid of the dependent variable (y) from all the other terms of the given differential equation.
Simplify the solution obtained using an appropriate substitution and integrating by parts
Complete step-by-step answer:
The given differential equation dxdy+xsin2y=x3cos2y is not in the standard form yet.
We divide both sides by cos2y and expand sin2y=2sinycosy , to get:
⇒ cos2y1dxdy+cos2yx×2sinycosy=x3
⇒ sec2ydxdy+2xtany=x3
Substituting tany=z , we have sec2ydy=dz .
⇒ dxdz+2x×z=x3
Comparing the above differential equation with the standard form dxdy+P×y=Q , we can say that:
P=2x and Q=x3 .
∴ The solution is:
⇒ z×e∫2xdx=∫x3×e∫2xdx dx+C
Using ∫xndx=n+1xn+1 , we get:
⇒ z×e2×2x2=∫x3×e2×2x2 dx+C
⇒ z×ex2=∫x2×x×ex2 dx+C
Let's substitute x2=t , then 2xdx=dt .
⇒ z×et=21∫tet dt+C
Integrating by parts, this is equal to:
⇒ z×et=21∫tet dt+C
⇒ z×et=21[t∫et dt−∫1×(∫etdt)dt]+C
⇒ z×et=21(tet−et)+C
Dividing by et , we get:
⇒ z=21(t−1)+etC
Back substituting for t=x2 and z=tany , we get:
⇒ tany=21(x2−1)+ex2C
⇒ y=tan−1[21(x2−1)+ex2C]
We are given that y(0)=0 . Putting x=0 and equating it to 0, we get:
⇒ 0=tan−1[21(0−1)+e0C]
⇒ tan0=2−1+1C
⇒ C=21
Therefore, y(1) will be:
⇒ y(1)=tan−1[21(12−1)+2e121]
⇒ y(1)=tan−1(2e1)
The correct answer is D. tan−12e1 .
Note: First Order Linear Differential Equation:
A differential equation of the form dxdy+P×y=Q , where P and Q are constants or functions of x only, is known as a first order linear differential equation.
Integration by Parts:
∫f(x)g(x)dx= !! !! f(x) !! !! ∫ !! !! g(x)dx−∫ !! !! [f′(x)∫ !! !! g(x)dx]dx .
Integration by substitution:
If we substitute x=f(t) , then dx=f′(t)dt and ∫f(x)dx= !! !! ∫f[f(t)]f′(t)dt .