Solveeit Logo

Question

Question: If \(\dfrac{{dy}}{{dx}} = {\left( {{e^y} - x} \right)^{ - 1}}\) where \(y\left( 0 \right) = 0\)then ...

If dydx=(eyx)1\dfrac{{dy}}{{dx}} = {\left( {{e^y} - x} \right)^{ - 1}} where y(0)=0y\left( 0 \right) = 0then yy is expressed explicitly as
(A) 0.5loge(1+x2)0.5{\log _e}\left( {1 + {x^2}} \right)
(B) loge(1+x2){\log _e}\left( {1 + {x^2}} \right)
(C) loge(x+1+x2){\log _e}\left( {x + \sqrt {1 + {x^2}} } \right)
(D) loge(x+1x2){\log _e}\left( {x + \sqrt {1 - {x^2}} } \right)

Explanation

Solution

First of all identify the type of differential equation. Here the given differential equation is in the form of dxdy+Px=Q\dfrac{{dx}}{{dy}} + Px = Q, so it is linear differential equation of first order whose solution can be find in several steps:
(i) Convert the given differential equation in the form of dxdy+Px=Q\dfrac{{dx}}{{dy}} + Px = Q to find out the values of PP and QQ.
(ii) Now find integrating factor (I.F.) by the formula; I.F.=ePdyI.F. = {e^{\int {Pdy} }}.
(iii) Now multiplying the both sides of equation obtained in step 1 by I.F., so that the LHS becomes the derivative of some function of xx and yy.
(iv) Now integrate the both sides of equation obtained in step 3 with respect to yy and then find the value of CC.

Complete step-by-step answer:
Given, dydx=(eyx)1\dfrac{{dy}}{{dx}} = {\left( {{e^y} - x} \right)^{ - 1}}
dydx=1(eyx)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\left( {{e^y} - x} \right)}}
dxdy=(eyx)\Rightarrow \dfrac{{dx}}{{dy}} = \left( {{e^y} - x} \right)
dxdy+x=ey\Rightarrow \dfrac{{dx}}{{dy}} + x = {e^y} …. (1)
It is of the form of first order differential equation, i.e., dxdy+Px=Q\dfrac{{dx}}{{dy}} + Px = Q, where P=1,Q=eyP = 1,Q = {e^y}.
The solution of a linear differential equation can be find by following steps:
Step 1: First of all, find the Integrating Factor (I.F.), which is given by,
I.F.=ePdyI.F. = {e^{\int {Pdy} }}
Put P=1P = 1,
I.F.=e1dyI.F. = {e^{\int {1 \cdot dy} }}
I.F.=eyI.F. = {e^y}
Step 2: Now multiplying the both sides of equation (1) by I.F., so that the LHS becomes the derivative of some function of xx and yy.
eydxdy+eyx=eyey{e^y}\dfrac{{dx}}{{dy}} + {e^y}x = {e^y}{e^y}
eydxdy+xey=e2y\Rightarrow {e^y}\dfrac{{dx}}{{dy}} + x{e^y} = {e^{2y}} ….. (2)
Now, using product rule of derivative, i.e., ddx[f(x)g(x)]=f(x)ddx[g(x)]+g(x)ddx[f(x)]\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] to find ddy(eyx)\dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right).
\therefore ddy(eyx)=eydxdy+xey\dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right) = {e^y} \cdot \dfrac{{dx}}{{dy}} + x{e^y}
Now, equation (2) becomes
ddy(eyx)=e2y\Rightarrow \dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right) = {e^{2y}} [Put eydxdy+xey=ddy(eyx){e^y} \cdot \dfrac{{dx}}{{dy}} + x{e^y} = \dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right)]
Step 3: Now integrating both sides of equation (3) with respect to yy, we get
eyx=e2y+C{e^y} \cdot x = \int {{e^{2y}}} + C, where CC is the constant of integration.
eyx=e2y2+C\Rightarrow {e^y} \cdot x = \dfrac{{{e^{2y}}}}{2} + C …. (3)
We have, y(0)=0y\left( 0 \right) = 0. Therefore, put x=0x = 0 and y=0y = 0 in equation (3) to find out the value of CC.
e00=e2(0)2+C\therefore {e^0} \cdot 0 = \dfrac{{{e^{2\left( 0 \right)}}}}{2} + C
0=12+C\Rightarrow 0 = \dfrac{1}{2} + C
C=12\Rightarrow C = \dfrac{{ - 1}}{2}
Put the value of CC in equation (3),
eyx=e2y212\therefore {e^y} \cdot x = \dfrac{{{e^{2y}}}}{2} - \dfrac{1}{2}
eyx=e2y12\Rightarrow {e^y} \cdot x = \dfrac{{{e^{2y}} - 1}}{2}
2eyx=e2y1\Rightarrow 2{e^y} \cdot x = {e^{2y}} - 1
e2y2xey1=0\Rightarrow {e^{2y}} - 2x{e^y} - 1 = 0
Step 4: Now find the value of yy by substituting ey=t{e^y} = t,
t22xt1=0\therefore {t^2} - 2xt - 1 = 0
Now find the value of tt by using the quadratic formula, i.e.,
t=b±b24ac2at = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
t=(2x)±(2x)24(1)(1)2(1)\therefore t = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}
t=2x±4x2+42\Rightarrow t = \dfrac{{2x \pm \sqrt {4{x^2} + 4} }}{2}
t=2x±4(x2+1)2\Rightarrow t = \dfrac{{2x \pm \sqrt {4\left( {{x^2} + 1} \right)} }}{2}
t=2x±2(x2+1)2\Rightarrow t = \dfrac{{2x \pm 2\sqrt {\left( {{x^2} + 1} \right)} }}{2}
t=2[x±(x2+1)]2\Rightarrow t = \dfrac{{2\left[ {x \pm \sqrt {\left( {{x^2} + 1} \right)} } \right]}}{2}
t=x±(x2+1)\Rightarrow t = x \pm \sqrt {\left( {{x^2} + 1} \right)}
ey=x±(x2+1)\therefore {e^y} = x \pm \sqrt {\left( {{x^2} + 1} \right)} (ey=t)\left( {\because {e^y} = t} \right)
y=loge[x±(x2+1)]\Rightarrow y = {\log _e}\left[ {x \pm \sqrt {\left( {{x^2} + 1} \right)} } \right]
Log value cannot be so we have to take positive value
y=\Rightarrow y = loge(x+1+x2){\log _e}\left( {x + \sqrt {1 + {x^2}} } \right)
Hence, option (C) is the correct answer.

Note: Linear differential equation of first order is of two types: one is the form of dxdy+Px=Q\dfrac{{dx}}{{dy}} + Px = Q and second is the form of dydx+Py=Q\dfrac{{dy}}{{dx}} + Py = Q. It may be noted that integrating factors for the above two equations are different. For dxdy+Px=Q\dfrac{{dx}}{{dy}} + Px = Q; I.F.=ePdyI.F. = {e^{\int {Pdy} }} and for dydx+Py=Q\dfrac{{dy}}{{dx}} + Py = Q; I.F.=ePdxI.F. = {e^{\int {Pdx} }}.