Solveeit Logo

Question

Question: If \(\dfrac{dy}{dx}+\dfrac{3}{{{\cos }^{2}}x}y=\dfrac{1}{{{\cos }^{2}}x}\), \(x\in \left( \dfrac{-\p...

If dydx+3cos2xy=1cos2x\dfrac{dy}{dx}+\dfrac{3}{{{\cos }^{2}}x}y=\dfrac{1}{{{\cos }^{2}}x}, x(π3,π3)x\in \left( \dfrac{-\pi }{3},\dfrac{\pi }{3} \right) and y(π4)=43y\left( \dfrac{\pi }{4} \right)=\dfrac{4}{3}, then y(π4)y\left( \dfrac{-\pi }{4} \right) equals to?
(a) 13+e6\dfrac{1}{3}+{{e}^{6}}
(b) 13\dfrac{1}{3}
(c) 43\dfrac{-4}{3}
(d) 13+e3\dfrac{1}{3}+{{e}^{3}}

Explanation

Solution

First, before proceeding for this, we must know the following trigonometric conversion as secx=1cosx\sec x=\dfrac{1}{\cos x}. Then, to get the solution of the above differential equation in the form dydx+Py=Q\dfrac{dy}{dx}+Py=Q, we need a integrating factor(IF) given by the formula as IF=ePdxIF={{e}^{\int{Pdx}}}. Then, to get the solution of the above differential equation in the form dydx+Py=Q\dfrac{dy}{dx}+Py=Q, we have the form of solution as y×IF=Q×IFdx+cy\times IF=\int{Q\times IF}dx+c. Then, by using the condition given in the question as y(π4)=43y\left( \dfrac{\pi }{4} \right)=\dfrac{4}{3}which means at x=π4x=\dfrac{\pi }{4}, y is 43\dfrac{4}{3}, we get the value of c and then we get the desired value.

Complete step by step answer:
In this question, we are supposed to find the value of y(π4)y\left( \dfrac{-\pi }{4} \right) when dydx+3cos2xy=1cos2x\dfrac{dy}{dx}+\dfrac{3}{{{\cos }^{2}}x}y=\dfrac{1}{{{\cos }^{2}}x}and y(π4)=43y\left( \dfrac{\pi }{4} \right)=\dfrac{4}{3}.
So, before proceeding for this, we must know the following trigonometric conversion as:
secx=1cosx\sec x=\dfrac{1}{\cos x}
So, by using it in the given question, we get the differential equation as:
dydx+3sec2xy=sec2x\dfrac{dy}{dx}+3{{\sec }^{2}}xy={{\sec }^{2}}x
Now, to get the solution of the above differential equation in the form dydx+Py=Q\dfrac{dy}{dx}+Py=Q, we need a integrating factor(IF) given by the formula as:
IF=ePdxIF={{e}^{\int{Pdx}}}
So, the value of P from the above differential equation is 3sec2x3{{\sec }^{2}}x to get the value of IF as:
IF=e3sec2xdx IF=e3tanx \begin{aligned} & IF={{e}^{\int{3{{\sec }^{2}}xdx}}} \\\ & \Rightarrow IF={{e}^{3\tan x}} \\\ \end{aligned}
Now, to get the solution of the above differential equation in the form dydx+Py=Q\dfrac{dy}{dx}+Py=Q, we have the form of solution as:
y×IF=Q×IFdx+cy\times IF=\int{Q\times IF}dx+c
Then, by substituting the value of IF and Q, we get:
y×e3tanx=sec2x×e3tanxdx+cy\times {{e}^{3\tan x}}=\int{{{\sec }^{2}}x\times {{e}^{3\tan x}}}dx+c
Now, by using the substitution as let tan x=u, we get the differentiation as:
sec2xdx=du{{\sec }^{2}}xdx=du
Then, by substituting the value in the above expression, we get:
y×e3tanx=e3udu+cy\times {{e}^{3\tan x}}=\int{{{e}^{3u}}du}+c
Then, b y solving the integral, we get:
y×e3tanx=e3u3+cy\times {{e}^{3\tan x}}=\dfrac{{{e}^{3u}}}{3}+c
Now, by substituting the value of assumed u as tan x, we get:
y×e3tanx=e3tanx3+c y=13+ce3tanx \begin{aligned} & y\times {{e}^{3\tan x}}=\dfrac{{{e}^{3\tan x}}}{3}+c \\\ & \Rightarrow y=\dfrac{1}{3}+\dfrac{c}{{{e}^{3\tan x}}} \\\ \end{aligned}
Now, by using the condition given in the question as y(π4)=43y\left( \dfrac{\pi }{4} \right)=\dfrac{4}{3}which means at x=π4x=\dfrac{\pi }{4}, y is 43\dfrac{4}{3} as:
43=13+ce3tanπ4 4313=ce3 33=ce3 c=e3 \begin{aligned} & \dfrac{4}{3}=\dfrac{1}{3}+\dfrac{c}{{{e}^{3\tan \dfrac{\pi }{4}}}} \\\ & \Rightarrow \dfrac{4}{3}-\dfrac{1}{3}=\dfrac{c}{{{e}^{3}}} \\\ & \Rightarrow \dfrac{3}{3}=\dfrac{c}{{{e}^{3}}} \\\ & \Rightarrow c={{e}^{3}} \\\ \end{aligned}
Then, by substituting the value of c as e3{{e}^{3}}, we get:
y=13+e3e3tanxy=\dfrac{1}{3}+\dfrac{{{e}^{3}}}{{{e}^{3\tan x}}}
Now, we are asked to find the value of y(π4)y\left( \dfrac{-\pi }{4} \right)which means the value of y at x=π4x=\dfrac{-\pi }{4}, we get:
y=13+e3e3tan(π4) y=13+e3e3 y=13+e6 \begin{aligned} & y=\dfrac{1}{3}+\dfrac{{{e}^{3}}}{{{e}^{3\tan \left( \dfrac{-\pi }{4} \right)}}} \\\ & \Rightarrow y=\dfrac{1}{3}+\dfrac{{{e}^{3}}}{{{e}^{-3}}} \\\ & \Rightarrow y=\dfrac{1}{3}+{{e}^{6}} \\\ \end{aligned}
So, we get the value of y(π4)y\left( \dfrac{-\pi }{4} \right) as 13+e6\dfrac{1}{3}+{{e}^{6}}.

So, the correct answer is “Option A”.

Note: Now, to solve these types of questions we need to know some of the basic integration and differentiation formulas beforehand to solve accurately. So, the required formula is as:
sec2xdx=tanx exdx=ex \begin{aligned} & \int{{{\sec }^{2}}xdx=\tan x} \\\ & \int{{{e}^{x}}dx={{e}^{x}}} \\\ \end{aligned}
Similarly, the required formula for differentiation is:
ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x