Solveeit Logo

Question

Question: If \[\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}\dfrac{{4\sqrt x }}{{1 - 4x}}} \right) = \] A.\[\dfrac...

If ddx(tan14x14x)=\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}\dfrac{{4\sqrt x }}{{1 - 4x}}} \right) =
A.1x(1+4x)\dfrac{1}{{\sqrt x \left( {1 + 4x} \right)}}
B.2x(1+4x)\dfrac{2}{{\sqrt x \left( {1 + 4x} \right)}}
C.4x(1+4x)\dfrac{4}{{\sqrt x \left( {1 + 4x} \right)}}
D.None of these

Explanation

Solution

Hint : Here, the given question. We have to find the derivative or differentiated term of the function. For this, first consider a given trigonometric expression as yy, then differentiate yy with respect to xx by using a standard differentiation formula and use quotient rule for differentiation then on further simplification we get the required differentiation value.

Complete step-by-step answer :
Differentiation can be defined as a derivative of a function with respect to an independent variable
Otherwise
The differentiation of a function is defined as the derivative or rate of change of a function. The function is said to be differentiable if the limit exists.
Let y=f(x)y = f\left( x \right) be a function of. Then, the rate of change of “y” per unit change in “x” is given by dydx\dfrac{{dy}}{{dx}}.
The quotient rule is used to differentiate many functions where one function is divided by another. The formal definition of the rule is: ddx(uv)=v(dudx)u(dvdx)v2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\left( {\dfrac{{du}}{{dx}}} \right) - u\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}.
Consider the given function as yy
y=tan14x14xy = {\tan ^{ - 1}}\dfrac{{4\sqrt x }}{{1 - 4x}} ------- (1)
Multiply ‘tan\tan ’ on both side
tany=tan(tan14x14x)\tan y = \tan \left( {{{\tan }^{ - 1}}\dfrac{{4\sqrt x }}{{1 - 4x}}} \right)
On simplification, we get
tany=4x14x\tan y = \dfrac{{4\sqrt x }}{{1 - 4x}} -----(2)
Now we have to differentiate this function on both sides with respect to xx.
ddx(tany)=ddx(4x14x)\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {\tan y} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{4\sqrt x }}{{1 - 4x}}} \right)
Apply a quotient rule of differentiation on RHS, then
ddx(tany)=(14x)(ddx4x)4x(ddx(14x))(14x)2\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {\tan y} \right) = \dfrac{{\left( {1 - 4x} \right) \cdot \left( {\dfrac{d}{{dx}}4\sqrt x } \right) - 4\sqrt x \cdot \left( {\dfrac{d}{{dx}}\left( {1 - 4x} \right)} \right)}}{{{{\left( {1 - 4x} \right)}^2}}} -----(3)
Using the standard differentiated formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}, ddx(x)=12x\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }} and ddx(tanx)=sec2x\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x, then equation (3) becomes
(sec2y)dydx=(14x)(412x)4x(4)(14x)2\Rightarrow \,\,\,\,\left( {{{\sec }^2}y} \right)\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 - 4x} \right) \cdot \left( {4\dfrac{1}{{2\sqrt x }}} \right) - 4\sqrt x \cdot \left( { - 4} \right)}}{{{{\left( {1 - 4x} \right)}^2}}}
We know the trigonometric identity 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta , then we have
(1+tan2y)dydx=2x(14x)+16x(14x)2\Rightarrow \,\,\,\,\left( {1 + {{\tan }^2}y} \right)\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{2}{{\sqrt x }}\left( {1 - 4x} \right) + 16\sqrt x }}{{{{\left( {1 - 4x} \right)}^2}}}
(1+tan2y)dydx=2x8x+16x(14x)2\Rightarrow \,\,\,\,\left( {1 + {{\tan }^2}y} \right)\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{2}{{\sqrt x }} - 8\sqrt x + 16\sqrt x }}{{{{\left( {1 - 4x} \right)}^2}}}
(1+tan2y)dydx=2x+8x(14x)2\Rightarrow \,\,\,\,\left( {1 + {{\tan }^2}y} \right)\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{2}{{\sqrt x }} + 8\sqrt x }}{{{{\left( {1 - 4x} \right)}^2}}}
(1+tan2y)dydx=2+8(x)2x(14x)2\Rightarrow \,\,\,\,\left( {1 + {{\tan }^2}y} \right)\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{2 + 8{{\left( {\sqrt x } \right)}^2}}}{{\sqrt x }}}}{{{{\left( {1 - 4x} \right)}^2}}}
(1+tan2y)dydx=2+8xx(14x)2\Rightarrow \,\,\,\,\left( {1 + {{\tan }^2}y} \right)\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x {{\left( {1 - 4x} \right)}^2}}}
Divide both side by (1+tan2y)\left( {1 + {{\tan }^2}y} \right), then we have
dydx=2+8xx(14x)2×11+tan2y\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x {{\left( {1 - 4x} \right)}^2}}} \times \dfrac{1}{{1 + {{\tan }^2}y}}
Substitute tany=4x14x\tan y = \dfrac{{4\sqrt x }}{{1 - 4x}}, then
dydx=2+8xx(14x)2×11+(4x14x)2\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x {{\left( {1 - 4x} \right)}^2}}} \times \dfrac{1}{{1 + {{\left( {\dfrac{{4\sqrt x }}{{1 - 4x}}} \right)}^2}}}
dydx=2+8xx(14x)2×1(14x)2+(4x)2(14x)2\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x {{\left( {1 - 4x} \right)}^2}}} \times \dfrac{1}{{\dfrac{{{{\left( {1 - 4x} \right)}^2} + {{\left( {4\sqrt x } \right)}^2}}}{{{{\left( {1 - 4x} \right)}^2}}}}}
On simplification, we get
dydx=2+8xx((14x)2+(4x)2)\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x \left( {{{\left( {1 - 4x} \right)}^2} + {{\left( {4\sqrt x } \right)}^2}} \right)}}
Apply a identity (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
dydx=2+8xx(1+16x28x+16x)\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x \left( {1 + 16{x^2} - 8x + 16x} \right)}}
dydx=2+8xx(1+16x2+8x)\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x \left( {1 + 16{x^2} + 8x} \right)}}
dydx=2+8xx(1+4x)2\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2 + 8x}}{{\sqrt x {{\left( {1 + 4x} \right)}^2}}}
Take 2 as common in the numerator of RHS
dydx=2(1+4x)x(1+4x)2\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{{2\left( {1 + 4x} \right)}}{{\sqrt x {{\left( {1 + 4x} \right)}^2}}}
On cancelling a like terms (1+4x)\left( {1 + 4x} \right) in both numerator and denominator, then we get
dydx=2x(1+4x)\therefore \,\,\,\,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{2}{{\sqrt x \left( {1 + 4x} \right)}}
Hence, the required the differentiated value ddx(tan14x14x)=2x(1+4x)\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}\dfrac{{4\sqrt x }}{{1 - 4x}}} \right) = \dfrac{2}{{\sqrt x \left( {1 + 4x} \right)}}.
Therefore, option (B) is the correct answer.
So, the correct answer is “Option B”.

Note : When differentiating the function or term the student must recognize the dependent and independent variable then differentiate the dependent variable with respect to the independent variable. Should know the product and quotient rule of differentiation and remember the standard differentiation formulas.