Solveeit Logo

Question

Question: If \(\dfrac{{\cos \alpha }}{{\sin \beta }} = n\) and \(\dfrac{{\cos \alpha }}{{\cos \beta }} = m\) t...

If cosαsinβ=n\dfrac{{\cos \alpha }}{{\sin \beta }} = n and cosαcosβ=m\dfrac{{\cos \alpha }}{{\cos \beta }} = m then find the value of cos2β{\cos ^2}\beta is

A. 1m2+n2\dfrac{1}{{{m^2} + {n^2}}}

B. m2m2+n2\dfrac{{{m^2}}}{{{m^2} + {n^2}}}

C. n2m2+n2\dfrac{{{n^2}}}{{{m^2} + {n^2}}}

D. 00

Explanation

Solution

Hint: In order to solve the trigonometry function we have to first see what is the requirement of the question and according to that we have to apply some arithmetic operations to get the final value. We can do division, square on the equation to get the required answer.

Complete step-by-step answer:
Given that cosαsinβ=n\dfrac{{\cos \alpha }}{{\sin \beta }} = n and cosαcosβ=m\dfrac{{\cos \alpha }}{{\cos \beta }} = m

Let us assume
cosαsinβ=n(1)\dfrac{{\cos \alpha }}{{\sin \beta }} = n \to (1)
cosαcosβ=m(2)\dfrac{{\cos \alpha }}{{\cos \beta }} = m \to (2)
When we do equation (2)(1)\dfrac{{(2)}}{{(1)}} we get
cosαcosβcosαsinβ=mn cosαcosβ×sinβcosα=mn sinβcosβ=mn  \dfrac{{\dfrac{{\cos \alpha }}{{\cos \beta }}}}{{\dfrac{{\cos \alpha }}{{\sin \beta }}}} = \dfrac{m}{n} \\\ \Rightarrow \dfrac{{\cos \alpha }}{{\cos \beta }} \times \dfrac{{\sin \beta }}{{\cos \alpha }} = \dfrac{m}{n} \\\ \Rightarrow \dfrac{{\sin \beta }}{{\cos \beta }} = \dfrac{m}{n} \\\

By doing square both side we get

sinβcosβ=mn (sinβcosβ)2=(mn)2 (sin2αcos2β)=(m2n2)  \Rightarrow \dfrac{{\sin \beta }}{{\cos \beta }} = \dfrac{m}{n} \\\ \Rightarrow {\left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)^2} = {\left( {\dfrac{m}{n}} \right)^2} \\\ \Rightarrow \left( {\dfrac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2}}}{{{n^2}}}} \right) \\\

By adding 11 both side we get
 (sin2βcos2β)+1=(m2n2)+1 (sin2β+cos2βcos2β)=(m2+n2n2) (sin2β+cos2β=1) (1cos2β)=(m2+n2n2)  \\\ \Rightarrow \left( {\dfrac{{{{\sin }^2}\beta }}{{{{\cos }^2}\beta }}} \right) + 1 = \left( {\dfrac{{{m^2}}}{{{n^2}}}} \right) + 1 \\\ \Rightarrow \left( {\dfrac{{{{\sin }^2}\beta + {{\cos }^2}\beta }}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2} + {n^2}}}{{{n^2}}}} \right) \\\ \because ({\sin ^2}\beta + {\cos ^2}\beta = 1) \\\ \Rightarrow \left( {\dfrac{1}{{{{\cos }^2}\beta }}} \right) = \left( {\dfrac{{{m^2} + {n^2}}}{{{n^2}}}} \right) \\\
By cross multiplication of the above equation we get
n2(1)=(m2+n2)(cos2β) (n2m2+n2)=cos2β  {n^2}(1) = ({m^2} + {n^2})({\cos ^2}\beta ) \\\ \Rightarrow \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right) = {\cos ^2}\beta \\\

So here we can see that we get
 cos2β=(n2m2+n2)  \\\ {\cos ^2}\beta = \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right) \\\

Hence, cos2β=(n2m2+n2){\cos ^2}\beta = \left( {\dfrac{{{n^2}}}{{{m^2} + {n^2}}}} \right) .

Therefore C is the correct option.

Note- For solving trigonometry functions we should know about their relationship. There are three main relations which can be used to solve trigonometry questions that is (sin2θ+cos2θ=1),({\sin ^2}\theta + {\cos ^2}\theta = 1), (sec2θ=1+tan2θ)({\sec ^2}\theta = 1 + {\tan ^2}\theta ) and (cosec2θ=1+cot2θ)(\cos e{c^2}\theta = 1 + {\cot ^2}\theta ) We can also prove it by using basic trigonometric properties.