Solveeit Logo

Question

Question: If \(\dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin \left( {C - \theta } \right)}}{{\sin \left( {C + \the...

If cosAcosB=sin(Cθ)sin(C+θ)\dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin \left( {C - \theta } \right)}}{{\sin \left( {C + \theta } \right)}}, then tanθ\tan \theta is equal to?
(A) tan(A+B2)tan(AB2)tanC2\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\tan \dfrac{C}{2}
(B) tan(A+B2)tan(AB2)tanC\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\tan C
(C) tan(A+B2)tan(AB2)sinC2\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\sin \dfrac{C}{2}
(D) tan(A+B2)tan(AB2)cosC2\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\cos \dfrac{C}{2}

Explanation

Solution

Start with the right hand side of the equation and apply formulas sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B and sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B. Then use componendo and dividendo after simplification. After that use trigonometric formulas of cosC+cosD\cos C + \cos D and cosCcosD\cos C - \cos D to convert the expression in the form of tanA, tanB and tanθ\tan A,{\text{ }}\tan B{\text{ and }}\tan \theta

Complete step-by-step solution:
According to the question, we have been given a trigonometric equation which is:
cosAcosB=sin(Cθ)sin(C+θ)\Rightarrow \dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin \left( {C - \theta } \right)}}{{\sin \left( {C + \theta } \right)}}
From this equation, we have to find out the value of tanθ\tan \theta in terms of other variables.
Given below are two trigonometric formulas that we are going to use here:

sin(A+B)=sinAcosB+cosAsinB sin(AB)=sinAcosBcosAsinB  \Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\\ \Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\\

If we use these two formulas on the right hand side of the above equation, we’ll get:
cosAcosB=sinCcosθcosCsinθsinCcosθ+cosCsinθ\Rightarrow \dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin C\cos \theta - \cos C\sin \theta }}{{\sin C\cos \theta + \cos C\sin \theta }}
If two ratios are equal, then we can apply componendo and dividend on them. Applying this theorem for the above equation, we’ll get:
cosA+cosBcosAcosB=sinCcosθcosCsinθ+sinCcosθ+cosCsinθsinCcosθcosCsinθsinCcosθcosCsinθ\Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{\sin C\cos \theta - \cos C\sin \theta + \sin C\cos \theta + \cos C\sin \theta }}{{\sin C\cos \theta - \cos C\sin \theta - \sin C\cos \theta - \cos C\sin \theta }}
Simplifying this, we’ll get:
cosA+cosBcosAcosB=2sinCcosθ2cosCsinθ cosA+cosBcosAcosB=tanCtanθ  \Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{2\sin C\cos \theta }}{{ - 2\cos C\sin \theta }} \\\ \Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = - \dfrac{{\tan C}}{{\tan \theta }} \\\
Here are another two trigonometric formulas we are going to use next:

cosC+cosD=2cos(C+D2)cos(CD2) cosCcosD=2sin(C+D2)sin(DC2)  \Rightarrow \cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\\ \Rightarrow \cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right) \\\

Using these formulas on the left hand side of the equation, we’ll get:
2cos(A+B2)cos(AB2)2sin(A+B2)sin(BA2)=tanCtanθ\Rightarrow \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }}
We know that sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta , we can substitute sin(BA2)=sin(AB2)\sin \left( {\dfrac{{B - A}}{2}} \right) = - \sin \left( {\dfrac{{A - B}}{2}} \right). Doing this and simplifying expressions, we’ll get:
cos(A+B2)cos(AB2)sin(A+B2)sin(AB2)=tanCtanθ 1tan(A+B2)tan(AB2)=tanCtanθ  \Rightarrow \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)}}{{ - \sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }} \\\ \Rightarrow - \dfrac{1}{{\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }} \\\
Cross multiplying the equation, we’ll get:
tanθ=tan(A+B2)tan(AB2)tanC\Rightarrow \tan \theta = \tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\tan C

Option (B) is the correct answer.

Note: When two ratios are equal i.e. ab=cd\dfrac{a}{b} = \dfrac{c}{d} then we can use componendo and dividend as shown below:
a+bab=c+dcd .....(1)\Rightarrow \dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}{\text{ }}.....{\text{(1)}}
We can use only componendo:
a+bb=c+dd .....(1)\Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}{\text{ }}.....{\text{(1)}}
Or we can use only dividendo:
abb=cdd .....(3)\Rightarrow \dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}{\text{ }}.....{\text{(3)}}
Dividing equation (2) and (3), we’ll get componendo and dividend. This is what we have used in the above problem.