Question
Question: If \(\dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin \left( {C - \theta } \right)}}{{\sin \left( {C + \the...
If cosBcosA=sin(C+θ)sin(C−θ), then tanθ is equal to?
(A) tan(2A+B)tan(2A−B)tan2C
(B) tan(2A+B)tan(2A−B)tanC
(C) tan(2A+B)tan(2A−B)sin2C
(D) tan(2A+B)tan(2A−B)cos2C
Solution
Start with the right hand side of the equation and apply formulas sin(A+B)=sinAcosB+cosAsinB and sin(A−B)=sinAcosB−cosAsinB. Then use componendo and dividendo after simplification. After that use trigonometric formulas of cosC+cosD and cosC−cosD to convert the expression in the form of tanA, tanB and tanθ
Complete step-by-step solution:
According to the question, we have been given a trigonometric equation which is:
⇒cosBcosA=sin(C+θ)sin(C−θ)
From this equation, we have to find out the value of tanθ in terms of other variables.
Given below are two trigonometric formulas that we are going to use here:
If we use these two formulas on the right hand side of the above equation, we’ll get:
⇒cosBcosA=sinCcosθ+cosCsinθsinCcosθ−cosCsinθ
If two ratios are equal, then we can apply componendo and dividend on them. Applying this theorem for the above equation, we’ll get:
⇒cosA−cosBcosA+cosB=sinCcosθ−cosCsinθ−sinCcosθ−cosCsinθsinCcosθ−cosCsinθ+sinCcosθ+cosCsinθ
Simplifying this, we’ll get:
⇒cosA−cosBcosA+cosB=−2cosCsinθ2sinCcosθ ⇒cosA−cosBcosA+cosB=−tanθtanC
Here are another two trigonometric formulas we are going to use next:
Using these formulas on the left hand side of the equation, we’ll get:
⇒2sin(2A+B)sin(2B−A)2cos(2A+B)cos(2A−B)=−tanθtanC
We know that sin(−θ)=−sinθ, we can substitute sin(2B−A)=−sin(2A−B). Doing this and simplifying expressions, we’ll get:
⇒−sin(2A+B)sin(2A−B)cos(2A+B)cos(2A−B)=−tanθtanC ⇒−tan(2A+B)tan(2A−B)1=−tanθtanC
Cross multiplying the equation, we’ll get:
⇒tanθ=tan(2A+B)tan(2A−B)tanC
Option (B) is the correct answer.
Note: When two ratios are equal i.e. ba=dc then we can use componendo and dividend as shown below:
⇒a−ba+b=c−dc+d .....(1)
We can use only componendo:
⇒ba+b=dc+d .....(1)
Or we can use only dividendo:
⇒ba−b=dc−d .....(3)
Dividing equation (2) and (3), we’ll get componendo and dividend. This is what we have used in the above problem.