Solveeit Logo

Question

Question: If \( \dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \) , where \( a,b,c...

If abc2=bc+cb\dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} , where a,b,c>0a,b,c > 0 then family of lines ax+by+c=0\sqrt a x + \sqrt b y + \sqrt c = 0 passes through the fixed point given by
A. (1,1)\left( {1,1} \right)
B. (1,2)\left( {1, - 2} \right)
C. (1,2)\left( { - 1,2} \right)
D. (1,1)\left( { - 1,1} \right)

Explanation

Solution

Hint : In order to get the fixed point, solve the given equation abc2=bc+cb\dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} , obtain an equation in terms of the variables a,b,ca,b,c . Then compare the equation with ax+by+c=0\sqrt a x + \sqrt b y + \sqrt c = 0 , find the value of x,yx,y and place it in the fixed point (x,y)\left( {x,y} \right) .

Complete step by step solution:
We are given with an equation abc2=bc+cb\dfrac{a}{{\sqrt {bc} }} - 2 = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} .
Solving this equation, step by step:
For that multiplying and dividing 2- 2 by bc\sqrt {bc} , in order to have a common denominator on the left side, and we get:
abc2bcbc=bc+cb a2bcbc=bc+cb   \dfrac{a}{{\sqrt {bc} }} - 2\dfrac{{\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \\\ \Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \sqrt {\dfrac{b}{c}} + \sqrt {\dfrac{c}{b}} \;
Since, we know that roots can be written as bc=bc\sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} and bc=bc\sqrt {bc} = \sqrt b \sqrt c .
So, using this writing the right-side equation as:
a2bcbc=bc+cb\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} + \dfrac{{\sqrt c }}{{\sqrt b }}
Multiplying and dividing the first operand on the right side by b\sqrt b , and multiplying and dividing the second operand on the right side by c\sqrt c , in order to get a common denominator:
Applying this, we get:
a2bcbc=bc×bb+cb×cc\dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{\sqrt b }}{{\sqrt c }} \times \dfrac{{\sqrt b }}{{\sqrt b }} + \dfrac{{\sqrt c }}{{\sqrt b }} \times \dfrac{{\sqrt c }}{{\sqrt c }}
Solving the right-hand side:
Since, we know that x.x=x\sqrt x .\sqrt x = x , that implies:
a2bcbc=bbc+cbc a2bcbc=b+cbc   \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{b}{{\sqrt {bc} }} + \dfrac{c}{{\sqrt {bc} }} \\\ \Rightarrow \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} = \dfrac{{b + c}}{{\sqrt {bc} }} \;
Multiplying both the sides by bc\sqrt {bc} :
a2bcbc×bc=b+cbc×bc a2bc=b+c   \dfrac{{a - 2\sqrt {bc} }}{{\sqrt {bc} }} \times \sqrt {bc} = \dfrac{{b + c}}{{\sqrt {bc} }} \times \sqrt {bc} \\\ \Rightarrow a - 2\sqrt {bc} = b + c \;
Adding both the sides by 2bc2\sqrt {bc} :
a2bc=b+c a2bc+2bc=b+c+2bc a=b+c+2bc   \Rightarrow a - 2\sqrt {bc} = b + c \\\ \Rightarrow a - 2\sqrt {bc} + 2\sqrt {bc} = b + c + 2\sqrt {bc} \\\ \Rightarrow a = b + c + 2\sqrt {bc} \;
Since, we know that x.x=x\sqrt x .\sqrt x = x , so b,cb, c and aa can be written as b=(b)2b = {\left( {\sqrt b } \right)^2} , a=(a)2a = {\left( {\sqrt a } \right)^2} , c=(c)2c = {\left( {\sqrt c } \right)^2} .
Substituting these values in the above equation, we get:
a=b+c+2bc (a)2=(b)2+(c)2+2bc   \Rightarrow a = b + c + 2\sqrt {bc} \\\ \Rightarrow {\left( {\sqrt a } \right)^2} = {\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} \;
On the right-hand side, we can see that it perfectly suits the formula: (x+y)2=x2+y2+2xy{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy .
So, replacing (b)2+(c)2+2bc{\left( {\sqrt b } \right)^2} + {\left( {\sqrt c } \right)^2} + 2\sqrt {bc} by (b+c)2{\left( {\sqrt b + \sqrt c } \right)^2} , we write it as:
(a)2=(b+c)2{\left( {\sqrt a } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2}
Subtracting both the sides by (b+c)2{\left( {\sqrt b + \sqrt c } \right)^2} , we get:
(a)2(b+c)2=(b+c)2(b+c)2 (a)2(b+c)2=0   {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = {\left( {\sqrt b + \sqrt c } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} \\\ \Rightarrow {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \;
Since, we know that x2y2=(x+y)(xy){x^2} - {y^2} = \left( {x + y} \right)\left( {x - y} \right) , so applying this in the above equation:
(a)2(b+c)2=0 (a+(b+c))(a(b+c))=0  {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b + \sqrt c } \right)^2} = 0 \\\ \Rightarrow \left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\\
Opening the inner parenthesis:
(a+(b+c))(a(b+c))=0 (a+b+c)(abc)=0   \left( {\sqrt a + \left( {\sqrt b + \sqrt c } \right)} \right)\left( {\sqrt a - \left( {\sqrt b + \sqrt c } \right)} \right) = 0 \\\ \Rightarrow \left( {\sqrt a + \sqrt b + \sqrt c } \right)\left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \;
So, from the above equation, we can see that either (a+b+c)=0\left( {\sqrt a + \sqrt b + \sqrt c } \right) = 0 or (abc)=0\left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 .
But it’s given that a,b,c>0a,b,c > 0 , that implies (a+b+c)0\left( {\sqrt a + \sqrt b + \sqrt c } \right) \ne 0 as the square root values will give a positive number and when added, the terms would never result into zero.
That gives (abc)=0\left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 , taking 1- 1 common from the equation and which can be written as
(abc)=0 1(a+b+c)=0   \Rightarrow \left( {\sqrt a - \sqrt b - \sqrt c } \right) = 0 \\\ \Rightarrow - 1\left( { - \sqrt a + \sqrt b + \sqrt c } \right) = 0 \; .
Dividing both sides by 1- 1 , we get:
(1)a+b(1)+c=0\Rightarrow \left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0
Since, it’s given that the family of lines passes through the fixed point, so the equations would be the same.
So, comparing (1)a+b(1)+c=0\left( { - 1} \right)\sqrt a + \sqrt b \left( 1 \right) + \sqrt c = 0 with another equation given ax+by+c=0\sqrt a x + \sqrt b y + \sqrt c = 0 , we get:
x=1 y=1   x = - 1 \\\ y = 1 \;
Therefore, the fixed point becomes (x,y)=(1,1)\left( {x,y} \right) = \left( { - 1,1} \right) , which matches with the option D.
Hence, Option D is correct.
So, the correct answer is “Option D”.

Note : It’s always preferred to solve step by step for ease, rather than solving at once, otherwise it would lead to confusion and there is a huge chance of error.
Writing of roots from one form to another is mandatory, like bc=bc\sqrt {\dfrac{b}{c}} = \dfrac{{\sqrt b }}{{\sqrt c }} and bc=bc\sqrt {bc} = \sqrt b \sqrt c.