Solveeit Logo

Question

Question: If \(\dfrac{{2{z_1}}}{{3{z_2}}}\)is a purely imaginary number, then find the value of \(\left| {\dfr...

If 2z13z2\dfrac{{2{z_1}}}{{3{z_2}}}is a purely imaginary number, then find the value of (z1z2)(z1+z2)\left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|.

Explanation

Solution

As it is given that 2z13z2\dfrac{{2{z_1}}}{{3{z_2}}}is a purely imaginary, we can equate them to imaginary number and get the ratio z1z2\dfrac{{{z_1}}}{{{z_2}}}. Then we can simplify the expression with this ratio. Then we can take the modulus to find the value of the expression.

Complete step by step answer:

It is given that 2z13z2\dfrac{{2{z_1}}}{{3{z_2}}}is purely imaginary. It means it has only imaginary part and real part is 0. So we can write,
2z13z2=0+ai\dfrac{{2{z_1}}}{{3{z_2}}} = 0 + ai, where a is any real number.
On simplification, we get,
z1z2=3ai2\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{3ai}}{2} … (1)
Now we have the expression,
Let I=(z1z2)(z1+z2)I = \left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|.
On dividing both numerator and denominator with z2{z_2}, we get,
I=(z1z21)(z1z2+1)I = \left| {\dfrac{{\left( {\dfrac{{{z_1}}}{{{z_2}}} - 1} \right)}}{{\left( {\dfrac{{{z_1}}}{{{z_2}}} + 1} \right)}}} \right|
Using equation (1), we get
I=(3ai21)(3ai2+1)I = \left| {\dfrac{{\left( {\dfrac{{3ai}}{2} - 1} \right)}}{{\left( {\dfrac{{3ai}}{2} + 1} \right)}}} \right|
Multiplying both numerator and denominator with 2, we get,
I=(3ai2)(3ai+2)I = \left| {\dfrac{{\left( {3ai - 2} \right)}}{{\left( {3ai + 2} \right)}}} \right|
By properties of modulus of complex numbers,z1z2=z1z1\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_1}} \right|}},
I=3ai23ai+2\Rightarrow I = \dfrac{{\left| {3ai - 2} \right|}}{{\left| {3ai + 2} \right|}}
We know that modulus of a complex number z=a+ibz = a + ib is given by, z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}}
I=(3a)2+(2)2(3a)2+(2)2 =9a2+49a2+4  \Rightarrow I = \dfrac{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( { - 2} \right)}^2}} }}{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( 2 \right)}^2}} }} \\\ = \dfrac{{\sqrt {9{a^2} + 4} }}{{\sqrt {9{a^2} + 4} }} \\\
Cancelling the common terms, we get,
I=1I = 1
(z1z2)(z1+z2)=1\Rightarrow \left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right| = 1
Thus, the value of (z1z2)(z1+z2)\left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|is equal to 1.

Note: A complex number is number of the form a+iba + ib where a and b are real numbers and ii is an imaginary part which satisfies the equation i2=1{i^2} = - 1. In a complex number a+iba + ib, aa is called the real part and ibib is called the imaginary part. Modulus of a complex number is the absolute value of the complex number. It is given by the equation z=a2+b2\left| z \right| = \sqrt {{a^2} + {b^2}} where z=a+ibz = a + ib