Question
Mathematics Question on Trigonometry
If1−sinx1+sinx=(1−siny)3(1+siny)3 for some real values x and y ,then sinysinx=
A
1+3sin2y3+sin2y
B
1+3cos2y3+cos2y
C
1−3sin2y3+sin2y
D
1−3cos2y3+sin2y
E
1−3cos2y1+3sin2y
Answer
1+3sin2y3+sin2y
Explanation
Solution
Given that:
1−sinx1+sinx=(1−siny)3(1+siny)3
⇒1−sinx1+sinx=1−sin3y+3sin2y−3siny1+sin3y+3siny+3sin2y
⇒\dfrac{1+sin x+1−sin x}{1+sin x−(1−sin x)}$$=\dfrac{1+sin3 y+3 sin y+3 sin2 y+1−sin3 y+3 sin2 y−3 sin y}{1+sin3 y+3 sin y+3 sin2 y−(1−sin3 y+3 sin2 y−3 sin y)}
⇒2sinx2=2sin3y+6siny2+6sin2y
⇒sinx1=sin3y+3siny1+3sin2y
⇒sinx=1+3sin2ysin3y+3siny
⇒sinysinx=1+3sinysin2y+3 (_Ans)