Solveeit Logo

Question

Question: If \(\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfra...

If 15Cr + 16Cr = 14Cr,\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}}, then the value of r equals to

Explanation

Solution

Hint:- Value of r cannot be more than 4 because in the given equation the minimum value of n involved in nCr{}^n{C_r} is 4.

As we know that for any positive number nn and non-negative number rr
nCr = n!r!(n  r)!\Rightarrow {}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}} where  r{\text{n }} \geqslant {\text{ r}}.
And as we see that there is 4Cr{}^4{C_r} in the given expression, so,  4{\text{r }} \leqslant {\text{ }}4.
\RightarrowGiven equation is 15Cr + 16Cr = 14Cr,\dfrac{1}{{{}^5{C_r}}}{\text{ }} + {\text{ }}\dfrac{1}{{{}^6{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}}, (1)
So, taking LCM of LHS of equation (1), we get
6Cr + 5Cr6Cr.5Cr = 14Cr\Rightarrow \dfrac{{{}^6{C_r}{\text{ }} + {\text{ }}{}^5{C_r}}}{{{}^6{C_r}.{}^5{C_r}}}{\text{ }} = {\text{ }}\dfrac{1}{{{}^4{C_r}}}
Now, for solving above equation, let’s expand 4Cr, 5Cr{}^4{C_r},{\text{ }}{}^5{C_r} and 6Cr{}^6{C_r}.
So, above equation becomes,
6!r!(6  r)! + 5!r!(5  r)!6!r!(6  r)!5!r!(5  r)! = 14!r!(4  r)!\Rightarrow \dfrac{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}
On manipulating above equation, it can be written as,
65!r!(6  r)(5  r)! + 5!r!(5  r)!6!r!(6  r)!5!r!(5  r)! = 14!r!(4  r)!\Rightarrow \dfrac{{\dfrac{{6*5!}}{{r!*(6{\text{ }} - {\text{ }}r)*(5{\text{ }} - {\text{ }}r)!}}{\text{ }} + {\text{ }}\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}*\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}}}}{\text{ = }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}
Taking 5!r!(5  r)!\dfrac{{5!}}{{r!(5{\text{ }} - {\text{ }}r)!}} common from the numerator and denominator, we get
(66  r + 1)6!r!(6  r)! = (12  r6  r)6!r!(6  r)! = 14!r!(4  r)!\Rightarrow \dfrac{{\left( {\dfrac{6}{{6{\text{ }} - {\text{ }}r}}{\text{ }} + {\text{ }}1} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{{\left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right)}}{{\dfrac{{6!}}{{r!(6{\text{ }} - {\text{ }}r)!}}}}{\text{ }} = {\text{ }}\dfrac{1}{{\dfrac{{4!}}{{r!(4{\text{ }} - {\text{ }}r)!}}}}
Solving above equation, we get
(12  r6  r) = 6!r!.(6  r)!4!r!.(4  r)! = 65(6  r)(5  r)\Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{\dfrac{{6!}}{{r!.\left( {6{\text{ }} - {\text{ }}r} \right)!}}}}{{\dfrac{{4!}}{{r!.\left( {4{\text{ }} - {\text{ }}r} \right)!}}}}{\text{ }} = {\text{ }}\dfrac{{6*5}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}}
So, from above equation, we get
(12  r6  r) = 30(6  r)(5  r)\Rightarrow \left( {\dfrac{{12{\text{ }} - {\text{ }}r}}{{6{\text{ }} - {\text{ }}r}}} \right){\text{ }} = {\text{ }}\dfrac{{30}}{{\left( {6{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right)}} ………... (2)
Now, cross-multiplying equation (2),
(12  r)(5  r) = 30\Rightarrow \left( {12{\text{ }} - {\text{ }}r} \right)\left( {5{\text{ }} - {\text{ }}r} \right){\text{ }} = {\text{ }}30 ………...(3)
On solving equation 3 it becomes,
r2  17r + 30 = 0\Rightarrow {r^2}{\text{ }} - {\text{ }}17r{\text{ }} + {\text{ }}30{\text{ }} = {\text{ }}0
Now, we had to solve the above equation to get different values of r possible.
(r  15)(r  2) = 0\Rightarrow \left( {r{\text{ }} - {\text{ }}15} \right)\left( {r{\text{ }} - {\text{ }}2} \right){\text{ }} = {\text{ }}0
Hence r can be 15 or 2 but,
As we have said earlier that  4{\text{r }} \leqslant {\text{ 4}},
\RightarrowSo, the value of r will be. = 2{\text{r }} = {\text{ }}2.

Note:- Whenever we come up with this type of problem then efficient and easiest way to get the required value of r is by changing the given equation to a polynomial equation of r by using relation nCr = n!r!(n  r)!{}^n{C_r}{\text{ }} = {\text{ }}\dfrac{{n!}}{{r!(n{\text{ }} - {\text{ }}r)!}}. And then we can get the value of r by after solving the polynomial equation.