Question
Question: If determinant \[f\left( x \right)=\left| \begin{aligned} & \begin{matrix} {{\left( x-a \ri...
If determinant f(x)= (x−a)4 (x−a)31(x−b)4 (x−b)31(x−c)4 (x−c)31 then f′(x)=λ (x−a)4 (x−a)21(x−b)4 (x−b)21(x−c)4 (x−c)21 . Find the value of λ .
Solution
Hint: We have to differentiate f(x) . Write ⇒dxdf(x)= dxd(x−a)4 (x−a)31dxd(x−b)4 (x−b)31dxd(x−c)4 (x−c)31 + (x−a)4 dxd(x−a)31(x−b)4 dxd(x−b)31(x−c)4 dxd(x−c)31 + (x−a)4 (x−a)3dxd(1)(x−b)4 (x−b)3dxd(1)(x−c)4 (x−c)3dxd(1) . Now, simplify dxdf(x) using the formula, dxd(x−a)n=n(x−a)n−1 . We also know that the differentiation of the constant term is 0. Expand the determinant along the third column and get the determinant value of (x−a)4 (x−a)30(x−b)4 (x−b)30(x−c)4 (x−c)30 . We know the property that if two rows or columns of a determinant are the same and identical then the determinant value of that determinant is equal to zero. So, the value of the determinant 4 (x−a)3 (x−a)31(x−b)3 (x−b)31(x−c)3 (x−c)31 is equal to zero. Now, compare 3 (x−a)4 (x−a)21(x−b)4 (x−b)21(x−c)4 (x−c)21 and λ (x−a)4 (x−a)21(x−b)4 (x−b)21(x−c)4 (x−c)21 , and get the value of λ ,
Complete step by step solution:
According to the question, we have a function which is given in the form of the determinant. We also have the derivative of the function f(x) in the form of the determinant.