Solveeit Logo

Question

Question: If [.] denotes the greatest integer function, then find the value of \(\mathop {\lim }\limits_{n \to...

If [.] denotes the greatest integer function, then find the value of limn[x]+[2x]+..........+[nx]n2\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ x \right] + \left[ {2x} \right] + .......... + \left[ {nx} \right]}}{{{n^2}}} is,

Explanation

Solution

In this particular question use the concept that [x] is greater than or less than equal to x, so [x] is written as, x1<[x]xx - 1 < \left[ x \right] \leqslant x, and later on use the concept of sandwich theorem, so use these concepts to reach the solution of the question.

Complete step-by-step answer :
Given data
[.] denotes the greatest integer function.
So according to the definition of the greatest integer function we have,
x1<[x]x\Rightarrow x - 1 < \left[ x \right] \leqslant x................ (1)
Similarly,
2x1<[2x]2x\Rightarrow 2x - 1 < \left[ {2x} \right] \leqslant 2x
3x1<[3x]3x\Rightarrow 3x - 1 < \left[ {3x} \right] \leqslant 3x
.
.
.
nx1<[nx]nx\Rightarrow nx - 1 < \left[ {nx} \right] \leqslant nx
Now add all these equation we have,
(x+2x+3x+....+nx)(1+1+1+......+1)<([x]+[2x]+[3x]+.......+[nx])(x+2x+3x+.....nx)\Rightarrow \left( {x + 2x + 3x + .... + nx} \right) - \left( {1 + 1 + 1 + ...... + 1} \right) < \left( {\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]} \right) \leqslant \left( {x + 2x + 3x + .....nx} \right)
Now as we know that 1 + 1 + 1 +...... + 1 up to n terms is equal to n so we have,
x(1+2+3+....+n)n<([x]+[2x]+[3x]+.......+[nx])x(1+2+3+.....n)\Rightarrow x\left( {1 + 2 + 3 + .... + n} \right) - n < \left( {\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]} \right) \leqslant x\left( {1 + 2 + 3 + .....n} \right)
Now as we know that 1 + 2 + 3 +...... + n is the summation of first n terms whose sum is given as, n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2} so we have,
x(n(n+1)2)n<([x]+[2x]+[3x]+.......+[nx])xn(n+1)2\Rightarrow x\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n < \left( {\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]} \right) \leqslant x\dfrac{{n\left( {n + 1} \right)}}{2}
Now divide by n2{n^2} throughout we have,
x(n(n+1)2)nn2<([x]+[2x]+[3x]+.......+[nx]n2)xn(n+1)2n2\Rightarrow \dfrac{{x\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n}}{{{n^2}}} < \left( {\dfrac{{\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]}}{{{n^2}}}} \right) \leqslant \dfrac{{x\dfrac{{n\left( {n + 1} \right)}}{2}}}{{{n^2}}}
x(n(n+1)2n2)1n<([x]+[2x]+[3x]+.......+[nx]n2)xn(n+1)2n2\Rightarrow x\left( {\dfrac{{n\left( {n + 1} \right)}}{{2{n^2}}}} \right) - \dfrac{1}{n} < \left( {\dfrac{{\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]}}{{{n^2}}}} \right) \leqslant x\dfrac{{n\left( {n + 1} \right)}}{{2{n^2}}}
x2(1+1n)1n<([x]+[2x]+[3x]+.......+[nx]n2)x2(1+1n)\Rightarrow \dfrac{x}{2}\left( {1 + \dfrac{1}{n}} \right) - \dfrac{1}{n} < \left( {\dfrac{{\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]}}{{{n^2}}}} \right) \leqslant \dfrac{x}{2}\left( {1 + \dfrac{1}{n}} \right)
Now apply limn\mathop {\lim }\limits_{n \to \infty } in all of the terms we have,
limn(x2(1+1n)1n)<limn([x]+[2x]+[3x]+.......+[nx]n2)limn(x2(1+1n))\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{x}{2}\left( {1 + \dfrac{1}{n}} \right) - \dfrac{1}{n}} \right) < \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]}}{{{n^2}}}} \right) \leqslant \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{x}{2}\left( {1 + \dfrac{1}{n}} \right)} \right)
Now as we know that when, n1n0n \to \infty \Rightarrow \dfrac{1}{n} \to 0 so we have,
x2<limn([x]+[2x]+[3x]+.......+[nx]n2)x2\Rightarrow \dfrac{x}{2} < \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]}}{{{n^2}}}} \right) \leqslant \dfrac{x}{2}
Now according to sandwich theorem if, limxh(x)<limxg(x)limxf(x)\mathop {\lim }\limits_{x \to \infty } h\left( x \right) < \mathop {\lim }\limits_{x \to \infty } g\left( x \right) \leqslant \mathop {\lim }\limits_{x \to \infty } f\left( x \right) and limxh(x)=limxf(x)=P\mathop {\lim }\limits_{x \to \infty } h\left( x \right) = \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = P then limxg(x)=P\mathop {\lim }\limits_{x \to \infty } g\left( x \right) = P so we have,
limn([x]+[2x]+[3x]+.......+[nx]n2)=x2\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\left[ x \right] + \left[ {2x} \right] + \left[ {3x} \right] + ....... + \left[ {nx} \right]}}{{{n^2}}}} \right) = \dfrac{x}{2}
So this is the required answer.

Note : Whenever we face such types of questions the key concept we have to remember is that always recall the sum of first n terms and always recall the sandwich theorem that if limxh(x)<limxg(x)limxf(x)\mathop {\lim }\limits_{x \to \infty } h\left( x \right) < \mathop {\lim }\limits_{x \to \infty } g\left( x \right) \leqslant \mathop {\lim }\limits_{x \to \infty } f\left( x \right), and limxh(x)=limxf(x)=P\mathop {\lim }\limits_{x \to \infty } h\left( x \right) = \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = P then limxg(x)=P\mathop {\lim }\limits_{x \to \infty } g\left( x \right) = P