Solveeit Logo

Question

Question: If [.] denote the greatest integer function then \(\lim _ { n \rightarrow \infty }\) \(\frac{\lbrac...

If [.] denote the greatest integer function then limn\lim _ { n \rightarrow \infty } [x]+[2x]+....+[nx]n2\frac{\lbrack x\rbrack + \lbrack 2x\rbrack + .... + \lbrack nx\rbrack}{n^{2}}is –

A

0

B

x

C

x/2

D

x2/2

Answer

x/2

Explanation

Solution

nx – 1 < [nx] ≤ nx. Putting n = 1, 2, 3,…. , n and adding them,

x Σ n – n < Σ [nx] ≤ x Σ n

∴ x . Σnn2\frac { \Sigma \mathrm { n } } { \mathrm { n } ^ { 2 } }1n\frac { 1 } { \mathrm { n } } < Σ[nx]n2\frac { \Sigma [ \mathrm { nx } ] } { \mathrm { n } ^ { 2 } } ≤ x . … (1)

Now,

= x . =

As the two limits are equal, by (1)

Σ[nx]n2\frac { \Sigma [ \mathrm { nx } ] } { \mathrm { n } ^ { 2 } } = .

Hence (3) is correct answer.