Question
Question: If [.] denote the greatest integer function then \(\lim _ { n \rightarrow \infty }\) \(\frac{\lbrac...
If [.] denote the greatest integer function then limn→∞ n2[x]+[2x]+....+[nx]is –
A
0
B
x
C
x/2
D
x2/2
Answer
x/2
Explanation
Solution
nx – 1 < [nx] ≤ nx. Putting n = 1, 2, 3,…. , n and adding them,
x Σ n – n < Σ [nx] ≤ x Σ n
∴ x . n2Σn – n1 < n2Σ[nx] ≤ x . … (1)
Now,
= x . –
=
As the two limits are equal, by (1)
n2Σ[nx] =
.
Hence (3) is correct answer.