Question
Question: If \(\Delta(x) = \left| \begin{matrix} x^{n} & \sin x & \cos x \\ n! & \sin\frac{n\pi}{2} & \cos\fra...
If Δ(x)=xnn!asinxsin2nπa2cosxcos2nπa3, then the value of dxndn[Δ(x)] at x=0is.
A
– 1
B
0
C
1
D
Dependent of a
Answer
0
Explanation
Solution
dxndn[Δ(x)]=dxndnxnn!adxndnsinxsin(2nπ)a2dxndncosxcos(2nπ)a3
\mathbf{n!} & \mathbf{\sin}\left( \mathbf{x +}\frac{\mathbf{n\pi}}{\mathbf{2}} \right) & \mathbf{\cos}\left( \mathbf{x +}\frac{\mathbf{n\pi}}{\mathbf{2}} \right) \\ \mathbf{n!} & \mathbf{\sin}\left( \frac{\mathbf{n\pi}}{\mathbf{2}} \right) & \mathbf{\cos}\left( \frac{\mathbf{n\pi}}{\mathbf{2}} \right) \\ \mathbf{a} & \mathbf{a}^{\mathbf{2}} & \mathbf{a}^{\mathbf{3}} \end{matrix} \right|$$ $\mathbf{\Rightarrow}$ $\mathbf{\lbrack}\mathbf{\Delta}^{\mathbf{n}}\mathbf{(x)}\mathbf{\rbrack}_{\mathbf{x = 0}}\mathbf{=}\left| \begin{matrix} \mathbf{n!} & \mathbf{\sin}\left( \mathbf{0 +}\frac{\mathbf{n\pi}}{\mathbf{2}} \right) & \mathbf{\cos}\left( \mathbf{0 +}\frac{\mathbf{n\pi}}{\mathbf{2}} \right) \\ \mathbf{n!} & \mathbf{\sin}\left( \frac{\mathbf{n\pi}}{\mathbf{2}} \right) & \mathbf{\cos}\left( \frac{\mathbf{n\pi}}{\mathbf{2}} \right) \\ \mathbf{a} & \mathbf{a}^{\mathbf{2}} & \mathbf{a}^{\mathbf{3}} \end{matrix} \right|\mathbf{= 0}$ {Since $R_{1} \equiv R_{2}$}.