Solveeit Logo

Question

Question: If \(\Delta(x)\) = \(\left| \begin{matrix} x & 1 + x^{2} & x^{3} \\ \log\left( 1 + x^{2} \right) & e...

If Δ(x)\Delta(x) = x1+x2x3log(1+x2)exsinxcosxtanxsin2x\left| \begin{matrix} x & 1 + x^{2} & x^{3} \\ \log\left( 1 + x^{2} \right) & e^{x} & \sin x \\ \cos x & \tan x & \sin^{2}x \end{matrix} \right|, then

A

Δ(x)\Delta(x) is divisible by x

B

Δ(x)=0\Delta(x) = 0

C

Δ(x)=0\Delta'(x) = 0

D

None of these.

Answer

Δ(x)\Delta(x) is divisible by x

Explanation

Solution

Let ∆ (x)=A+Bx+Cx2+Dx3+.........(x) = A + Bx + Cx^{2} + Dx^{3} + .........

∴ ∆ (0)=010010100=0A=0(0) = \left| \begin{matrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{matrix} \right| = 0 \Rightarrow A = 0

∆' (0)=100010001+010011100+010010100=1(0) = \left| \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right| + \left| \begin{matrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{matrix} \right| + \left| \begin{matrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{matrix} \right| = 1

∴ B= 1

⇒ then ∆ (x)(x) = x+Cx2+Dx3+.......x + Cx^{2} + Dx^{3} + .......

∴ ∆ x is divisible by x.