Solveeit Logo

Question

Question: If \(\Delta(x) = \left| \begin{matrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x -...

If Δ(x)=1cosx1cosx1+sinxcosx1+sinxcosxsinxsinx1\Delta(x) = \left| \begin{matrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \\ \sin x & \sin x & 1 \end{matrix} \right|, then 0π/2Δ(x)dx\int_{0}^{\pi/2}{\Delta(x)}dx is

equal to

A

¼

B

½

C

0

D

–1/2

Answer

–1/2

Explanation

Solution

Applying C3C3+C2C1C_{3} \rightarrow C_{3} + C_{2} - C_{1}

1 & \cos x & 0 \\ 1 + \sin x & \cos x & 0 \\ \sin x & \sin x & 1 \end{matrix} \right| = \cos x - \cos x(1 + \sin x) = - \sin x\cos x$$ $$\therefore\int_{0}^{\pi/2}{\Delta(x)dx = - \frac{1}{2}}\int_{0}^{\pi/2}{\sin 2xdx} = - \frac{1}{2}\left\lbrack - \frac{\cos 2x}{2} \right\rbrack_{0}^{\pi/2} = \frac{1}{4}(\cos\pi - \cos 0) = - \frac{1}{2}$$