Solveeit Logo

Question

Question: If \(\Delta\)G = – 177 K cal for (1) 2 Fe(s) +\(\frac{3}{2}\)O2 (g) \(\longrightarrow\) Fe2O3 (s) a...

If Δ\DeltaG = – 177 K cal for (1) 2 Fe(s) +32\frac{3}{2}O2 (g) \longrightarrow Fe2O3 (s)

and Δ\DeltaG = – 19 K cal for (2) 4 Fe2O3 (s) + Fe(s) \longrightarrow 3 Fe3O4 (s)

What is the Gibbs free energy of formation of Fe3O4(s)?

A
  • 229.6 kcal/mol
B

– 242.3 kcal/mol

C

– 727 kcal/mol

D

– 229.6 kcal/mol

Answer

– 242.3 kcal/mol

Explanation

Solution

Δ\DeltaG for 3Fe(s) + 2O2 (g) \longrightarrow Fe3O4 (s) can be obtained by taking

[(2) + 4 × (1)] × 13\frac{1}{3}

Hence, we get Δ\DeltaGf = [– 19 + 4 × (– 177)] × 13\frac{1}{3} = – 242.3 k cal for 1 mole Fe3O4