Question
Question: If \(\Delta_{1} = \left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right|\) a...
If Δ1=xaabxabbx and Δ2=xabxare the given
determinants, then
A
Δ1=3(Δ2)2
B
dxd(Δ1)=3Δ2
C
dxd(Δ1)=2(Δ2)2
D
Δ1=3Δ23/2
Answer
dxd(Δ1)=3Δ2
Explanation
Solution
Δ1=xaabxabbx=x3−3abx⇒dxd(Δ1)=3(x2−ab) and
x & b \\ a & x \end{matrix} \right| = x^{2} - ab$$ $$\therefore\frac{d}{dx}(\Delta_{1}) = 3(x^{2} - ab) = 3\Delta_{2}$$