Solveeit Logo

Question

Question: If \(\Delta_{1} = \left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right|\) a...

If Δ1=xbbaxbaax\Delta_{1} = \left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right| and Δ2=xbax\Delta_{2} = \left| \begin{matrix} x & b \\ a & x \end{matrix} \right|are the given

determinants, then

A

Δ1=3(Δ2)2\Delta_{1} = 3(\Delta_{2})^{2}

B

ddx(Δ1)=3Δ2\frac{d}{dx}(\Delta_{1}) = 3\Delta_{2}

C

ddx(Δ1)=2(Δ2)2\frac{d}{dx}(\Delta_{1}) = 2(\Delta_{2})^{2}

D

Δ1=3Δ23/2\Delta_{1} = 3\Delta_{2}^{3/2}

Answer

ddx(Δ1)=3Δ2\frac{d}{dx}(\Delta_{1}) = 3\Delta_{2}

Explanation

Solution

Δ1=xbbaxbaax=x33abxddx(Δ1)=3(x2ab)\Delta_{1} = \left| \begin{matrix} x & b & b \\ a & x & b \\ a & a & x \end{matrix} \right| = x^{3} - 3abx \Rightarrow \frac{d}{dx}(\Delta_{1}) = 3(x^{2} - ab) and

x & b \\ a & x \end{matrix} \right| = x^{2} - ab$$ $$\therefore\frac{d}{dx}(\Delta_{1}) = 3(x^{2} - ab) = 3\Delta_{2}$$