Solveeit Logo

Question

Question: If \(\Delta_{1} = \left| \begin{matrix} f & 2d & e \\ 2z & 4x & 2y \\ e & 2a & b \end{matrix} \right...

If Δ1=f2de2z4x2ye2ab\Delta_{1} = \left| \begin{matrix} f & 2d & e \\ 2z & 4x & 2y \\ e & 2a & b \end{matrix} \right|&Δ2=2abe2def4x2y2z\Delta_{2} = \left| \begin{matrix} 2a & b & e \\ 2d & e & f \\ 4x & 2y & 2z \end{matrix} \right| then Δ1Δ2\frac{\Delta_{1}}{\Delta_{2}} =

A

1

B

2

C

½

D

None

Answer

1

Explanation

Solution

Δ=f2de2z4x2ye2ab\Delta = \left| \begin{matrix} f & 2d & e \\ 2z & 4x & 2y \\ e & 2a & b \end{matrix} \right| C1C2\mathrm { C } _ { 1 } \leftrightarrow \mathrm { C } _ { 2 }

=2dfe4x2z2y2aeb- \left| \begin{matrix} 2d & f & e \\ 4x & 2z & 2y \\ 2a & e & b \end{matrix} \right| C2C3\mathrm { C } _ { 2 } \leftrightarrow \mathrm { C } _ { 3 }

=2def4x2y2z2abe\left| \begin{matrix} 2d & e & f \\ 4x & 2y & 2z \\ 2a & b & e \end{matrix} \right| R1R3\mathrm { R } _ { 1 } \leftrightarrow \mathrm { R } _ { 3 } =2abe4x2y2z2def\left| \begin{matrix} 2a & b & e \\ 4x & 2y & 2z \\ 2d & e & f \end{matrix} \right| R2R3\mathrm { R } _ { 2 } \leftrightarrow \mathrm { R } _ { 3 }

= 2abe2def4x2y2z=Δ2\left| \begin{matrix} 2a & b & e \\ 2d & e & f \\ 4x & 2y & 2z \end{matrix} \right| = \Delta_{2}

\Δ1Δ2=1\frac{\Delta_{1}}{\Delta_{2}} = 1