Solveeit Logo

Question

Question: If \(\Delta_{1} = \left| \begin{matrix} a_{1}^{2} + b_{1} + c_{1} & a_{1}a_{2} + b_{2} + c_{2} & a_{...

If Δ1=a12+b1+c1a1a2+b2+c2a1a3+b3+c3b1b2+c1b22+c2b2b3+c3c3c1c3c2c32\Delta_{1} = \left| \begin{matrix} a_{1}^{2} + b_{1} + c_{1} & a_{1}a_{2} + b_{2} + c_{2} & a_{1}a_{3} + b_{3} + c_{3} \\ b_{1}b_{2} + c_{1} & b_{2}^{2} + c_{2} & b_{2}b_{3} + c_{3} \\ c_{3}c_{1} & c_{3}c_{2} & c_{3}^{2} \end{matrix} \right|&

Δ2=a1b1c1a2b2c2a3b3c3\Delta_{2} = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right|, then Δ1Δ2\frac{\Delta_{1}}{\Delta_{2}} equals-

A

a1b2c3

B

a1a2a3

C

a3b2c1

D

a1b1c1 + a2b2c2 + a3b3c3

Answer

a1b2c3

Explanation

Solution

Taking C3 common from R3 & applying

R2 → R2 – R3, R1 → R1 –R3

a_{1}^{2} + b_{1} & a_{1}a_{2} + b_{2} & a_{1}a_{3} + b_{3} \\ b_{1}b_{2} & b_{2}^{2} & b_{2}b_{3} \\ c_{1} & c_{2} & c_{3} \end{matrix} \right|$$ Taking b<sub>2</sub> common from R<sub>2</sub>, R<sub>1</sub> → R<sub>1</sub> – R<sub>2</sub> $$\Delta_{1} = a_{1}b_{2}c_{3}\left| \begin{matrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{matrix} \right|$$ $$\frac{\Delta_{1}}{\Delta_{2}} = a_{1}b_{2}c_{3}$$