Question
Question: If \(\Delta_{1} = \left| \begin{matrix} a_{1}^{2} + b_{1} + c_{1} & a_{1}a_{2} + b_{2} + c_{2} & a_{...
If Δ1=a12+b1+c1b1b2+c1c3c1a1a2+b2+c2b22+c2c3c2a1a3+b3+c3b2b3+c3c32&
Δ2=a1a2a3b1b2b3c1c2c3, then Δ2Δ1 equals-
A
a1b2c3
B
a1a2a3
C
a3b2c1
D
a1b1c1 + a2b2c2 + a3b3c3
Answer
a1b2c3
Explanation
Solution
Taking C3 common from R3 & applying
R2 → R2 – R3, R1 → R1 –R3
a_{1}^{2} + b_{1} & a_{1}a_{2} + b_{2} & a_{1}a_{3} + b_{3} \\ b_{1}b_{2} & b_{2}^{2} & b_{2}b_{3} \\ c_{1} & c_{2} & c_{3} \end{matrix} \right|$$ Taking b<sub>2</sub> common from R<sub>2</sub>, R<sub>1</sub> → R<sub>1</sub> – R<sub>2</sub> $$\Delta_{1} = a_{1}b_{2}c_{3}\left| \begin{matrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{matrix} \right|$$ $$\frac{\Delta_{1}}{\Delta_{2}} = a_{1}b_{2}c_{3}$$