Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If Δ(x)1cosx1cosx 1+sinxcosx1+sinxcosx sinxsinx1,\Delta (x) \begin{vmatrix}1&\cos x&1 -\cos x\\\ 1+ \sin x& \cos x &1+ \sin x - \cos x\\\ \sin x &\sin x&1\end{vmatrix}, then 0π/4Δ(x)dx\int\limits^{\pi / 4}_{0} \Delta\left(x\right)dx is equal to

A

14\frac{1}{4}

B

12\frac{1}{2}

C

0

D

14 - \frac{1}{4}

Answer

14 - \frac{1}{4}

Explanation

Solution

Δ(x)=1cosx1cosx 1+sinxcosx1+sinxcosx sinxsinx1,\Delta (x) = \begin{vmatrix}1&\cos x&1 -\cos x\\\ 1+ \sin x & \cos x &1+ \sin x - \cos x\\\ \sin x &\sin x&1\end{vmatrix},
Applying C3C3+C2C1C_{3} \to C_{3} + C_{2} - C_{1}
Δ(x)=1cosx0 1+sinxcosx0 sinxsinx1\Delta\left(x\right) = \begin{vmatrix}1&\cos x &0\\\ 1 +\sin x&\cos x &0\\\ \sin x&\sin x &1\end{vmatrix}
=cosxcosx(1+sinx)= \cos x - \cos x \left( 1 + \sin x \right)
[[\because expanding along C3C_{3}]
=cosx.sinx=12sin 2x= - \cos x. \sin x = - \frac{1}{2} \sin \ 2x
0π/4Δ(x)dx\therefore \int\limits^{\pi /4}_{0} \Delta\left(x\right)dx
=120π/4sin 2x dx= - \frac{1}{2} \int\limits^{\pi/ 4}_{0} \sin \ 2x \ dx
=12[cos2x2]0π/4= - \frac{1}{2}\left[- \frac{\cos2x}{2}\right]^{\pi / 4}_{0}
=+12×2[cosπ2cos0]= + \frac{1}{2 \times2} \left[ \cos \frac{\pi}{2} - \cos0^{\circ}\right]
=14(01)=14= \frac{1}{4} \left(0-1\right) = - \frac{1}{4}