Question
Mathematics Question on Integrals of Some Particular Functions
If Δ(x)1 1+sinx sinxcosxcosxsinx1−cosx1+sinx−cosx1, then 0∫π/4Δ(x)dx is equal to
A
41
B
21
C
0
D
−41
Answer
−41
Explanation
Solution
Δ(x)=1 1+sinx sinxcosxcosxsinx1−cosx1+sinx−cosx1,
Applying C3→C3+C2−C1
Δ(x)=1 1+sinx sinxcosxcosxsinx001
=cosx−cosx(1+sinx)
[∵ expanding along C3]
=−cosx.sinx=−21sin 2x
∴0∫π/4Δ(x)dx
=−210∫π/4sin 2x dx
=−21[−2cos2x]0π/4
=+2×21[cos2π−cos0∘]
=41(0−1)=−41