Question
Question: If \[{\Delta _r} = \left| {\begin{array}{*{20}{c}} r&{2r - 1}&{3r + 2} \\\ {\dfrac{n}{2}}&{...
If {\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r + 2} \\\
{\dfrac{n}{2}}&{n - 1}&a; \\\
{\dfrac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\dfrac{1}{2}\left( {n - 1} \right)\left( {3n + 4} \right)}
\end{array}} \right|, then the value ofr=1∑n−1Δr:
A) Depends only on a
B) Depends only on n
C) Depends both on a and n
D) Is Independent of both a and n
Solution
Here we will use the values of summation and then apply elementary row operations to evaluate the value of given determinant.
x=1∑n−1x=2n(n−1)
Complete step-by-step answer:
The given expression is:-
Now we will evaluate the value of x=1∑n−13r+2
Splitting the summation we get:-
x=1∑n−13r+2=r=1∑n−13r+r=1∑n−12
Solving it further we get:-
⇒x=1∑n−13r+2=3r=1∑n−1r+2r=1∑n−11
Now we know that:-
r=1∑n−11=n−1
Putting this value in above equation we get:-
⇒x=1∑n−13r+2=3r=1∑n−1r+2(n−1)
Now putting the value from equation 1 we get:-
x=1∑n−13r+2=3[2n(n−1)]+2n−2
Taking LCM we get:-
Solving it further we get:-
x=1∑n−13r+2=23n(n−1)+2(2n−2)
Taking 2 as common we get:-
x=1∑n−13r+2=23n(n−1)+2(2)(n−1)
Solving it further we get:-
Now we will evaluate the value of r=1∑n−1Δr.
Hence we get:-