Solveeit Logo

Question

Question: If \(\Delta = \left| \begin{matrix} \sqrt{6} & 2i & 3 + \sqrt{6} \\ \sqrt{12} & \sqrt{3} + \sqrt{8}i...

If Δ=62i3+6123+8i32+6i182+12i27+2i\Delta = \left| \begin{matrix} \sqrt{6} & 2i & 3 + \sqrt{6} \\ \sqrt{12} & \sqrt{3} + \sqrt{8}i & 3\sqrt{2} + \sqrt{6}i \\ \sqrt{18} & \sqrt{2} + \sqrt{12}i & \sqrt{27} + 2i \end{matrix} \right|, then ∆ is

A

An integer

B

A rational number

C

An irrational number

D

An imaginary number

Answer

An integer

Explanation

Solution

Taking 6\sqrt{6} common from C1,

R2R22R1,R3R33R1R_{2} \rightarrow R_{2} - \sqrt{2}R_{1,}R_{3} \rightarrow R_{3} - \sqrt{3}R_{1}

1 & 2i & 3 + \sqrt{6} \\ 0 & \sqrt{3} & \sqrt{6}i - 2\sqrt{3} \\ 0 & \sqrt{2} & 2i - 3\sqrt{2} \end{matrix} \right|$$ = ![](https://cdn.pureessence.tech/canvas_72.png?top_left_x=1168&top_left_y=547&width=300&height=104)$\left( C_{2} \rightarrow C_{2} - \sqrt{2}iC_{1} \right)$ = $\sqrt{6}( - 3\sqrt{6} + 2\sqrt{6}) = - 6$