Question
Question: If \(\Delta = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} ...
If Δ=a1a2a3b1b2b3c1c2c3 and A1,B1,C1denote the co-factors of a1,b1,c1 respectively, then the value of the determinant A1A2A3B1B2B3C1C2C3 is.
A
Δ
B
Δ2
C
Δ3
D
0
Answer
Δ2
Explanation
Solution
We know that
a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right|.\left| \begin{matrix} A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3} \end{matrix} \right|$$ $$= \left| \begin{matrix} \Sigma a_{1}A_{1} & 0 & 0 \\ 0 & \Sigma a_{2}A_{2} & 0 \\ 0 & 0 & \Sigma a_{3}A_{3} \end{matrix} \right| = \left| \begin{matrix} \Delta & 0 & 0 \\ 0 & \Delta & 0 \\ 0 & 0 & \Delta \end{matrix} \right| = \Delta^{3}$$ ⇒ $\Delta^{'} = \Delta^{2}$.