Solveeit Logo

Question

Question: If \(\Delta = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} ...

If Δ=a1b1c1a2b2c2a3b3c3\Delta = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right| and A1,B1,C1A_{1},B_{1},C_{1} denote the cofactors of a1,b1,c1a_{1},b_{1},c_{1} respectively, then the value of the determinant A1B1C1A2B2C2A3B3C3\left| \begin{matrix} A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3} \end{matrix} \right| is

A

Δ\Delta

B

Δ2\Delta^{2}

C

Δ3\Delta^{3}

D

00

Answer

Δ2\Delta^{2}

Explanation

Solution

We know that Δ.Δ=a1b1c1a2b2c2a3b3c3\Delta.\Delta' = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right|.A1B1C1A2B2C2A3B3C3\left| \begin{matrix} A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3} \end{matrix} \right|

\Sigma a_{1}A_{1} & 0 & 0 \\ 0 & \Sigma a_{2}A_{2} & 0 \\ 0 & 0 & \Sigma a_{3}A_{3} \end{matrix} \right| = \left| \begin{matrix} \Delta & 0 & 0 \\ 0 & \Delta & 0 \\ 0 & 0 & \Delta \end{matrix} \right| = \Delta^{3} \Rightarrow \Delta' = \Delta^{2}$$ Trick : According to property of cofactors $\Delta' = \Delta^{n - 1} = \Delta^{2}$ $$(\because\text{Hence}n = 3)$$