Question
Question: If \(\Delta = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} ...
If Δ=a1a2a3b1b2b3c1c2c3 and A1,B1,C1 denote the cofactors of a1,b1,c1 respectively, then the value of the determinant A1A2A3B1B2B3C1C2C3 is
A
Δ
B
Δ2
C
Δ3
D
0
Answer
Δ2
Explanation
Solution
We know that Δ.Δ′=a1a2a3b1b2b3c1c2c3.A1A2A3B1B2B3C1C2C3
\Sigma a_{1}A_{1} & 0 & 0 \\ 0 & \Sigma a_{2}A_{2} & 0 \\ 0 & 0 & \Sigma a_{3}A_{3} \end{matrix} \right| = \left| \begin{matrix} \Delta & 0 & 0 \\ 0 & \Delta & 0 \\ 0 & 0 & \Delta \end{matrix} \right| = \Delta^{3} \Rightarrow \Delta' = \Delta^{2}$$ Trick : According to property of cofactors $\Delta' = \Delta^{n - 1} = \Delta^{2}$ $$(\because\text{Hence}n = 3)$$