Solveeit Logo

Question

Question: If $\Delta G^\circ$ of acidic solution of a half cell $MnO_4^-/MnO_2$ is -xF. Calculate value of x. ...

If ΔG\Delta G^\circ of acidic solution of a half cell MnO4/MnO2MnO_4^-/MnO_2 is -xF. Calculate value of x.

(EMnO4/Mn2+=1.5V,EMnO2/Mn2+=1.25V)\left(E_{MnO_4^-/Mn^{2+}}^\circ=1.5V, E_{MnO_2/Mn^{2+}}^\circ=1.25V\right)

Answer

5

Explanation

Solution

To calculate the value of x, we need to determine the standard Gibbs free energy change (ΔG\Delta G^\circ) for the half-cell reaction MnO4/MnO2MnO_4^-/MnO_2 in acidic solution. The reaction can be written as: MnO4MnO2MnO_4^- \rightarrow MnO_2

First, let's write the given half-reactions and their corresponding ΔG\Delta G^\circ values. The relationship between ΔG\Delta G^\circ and standard electrode potential (EE^\circ) is given by: ΔG=nFE\Delta G^\circ = -nFE^\circ where nn is the number of electrons transferred, and FF is Faraday's constant.

1. For EMnO4/Mn2+=1.5VE_{MnO_4^-/Mn^{2+}}^\circ = 1.5V: The half-reaction is MnO4Mn2+MnO_4^- \rightarrow Mn^{2+}. The oxidation state of Mn in MnO4MnO_4^- is +7. The oxidation state of Mn in Mn2+Mn^{2+} is +2. The change in oxidation state is 72=57 - 2 = 5. So, 5 electrons are involved. The balanced half-reaction in acidic medium is: MnO4+8H++5eMn2++4H2OMnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O (Reaction 1) Here, n1=5n_1 = 5 and E1=1.5VE_1^\circ = 1.5V. ΔG1=n1FE1=5×F×1.5=7.5F\Delta G_1^\circ = -n_1 F E_1^\circ = -5 \times F \times 1.5 = -7.5F

2. For EMnO2/Mn2+=1.25VE_{MnO_2/Mn^{2+}}^\circ = 1.25V: The half-reaction is MnO2Mn2+MnO_2 \rightarrow Mn^{2+}. The oxidation state of Mn in MnO2MnO_2 is +4. The oxidation state of Mn in Mn2+Mn^{2+} is +2. The change in oxidation state is 42=24 - 2 = 2. So, 2 electrons are involved. The balanced half-reaction in acidic medium is: MnO2+4H++2eMn2++2H2OMnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O (Reaction 2) Here, n2=2n_2 = 2 and E2=1.25VE_2^\circ = 1.25V. ΔG2=n2FE2=2×F×1.25=2.5F\Delta G_2^\circ = -n_2 F E_2^\circ = -2 \times F \times 1.25 = -2.5F

3. For the target half-cell MnO4/MnO2MnO_4^-/MnO_2: The half-reaction is MnO4MnO2MnO_4^- \rightarrow MnO_2. The oxidation state of Mn in MnO4MnO_4^- is +7. The oxidation state of Mn in MnO2MnO_2 is +4. The change in oxidation state is 74=37 - 4 = 3. So, 3 electrons are involved. The balanced half-reaction in acidic medium is: MnO4+4H++3eMnO2+2H2OMnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O (Reaction 3) Let this be ΔG3\Delta G_3^\circ.

We can obtain Reaction 3 by combining Reaction 1 and Reaction 2. We want MnO4MnO_4^- on the reactant side and MnO2MnO_2 on the product side. Reaction 1: MnO4+8H++5eMn2++4H2OMnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O To get MnO2MnO_2 on the product side, we need to reverse Reaction 2: Mn2++2H2OMnO2+4H++2eMn^{2+} + 2H_2O \rightarrow MnO_2 + 4H^+ + 2e^- (Reversed Reaction 2) The ΔG\Delta G^\circ for the reversed reaction is the negative of the original ΔG\Delta G^\circ: ΔG2,reversed=ΔG2=(2.5F)=2.5F\Delta G_{2,reversed}^\circ = -\Delta G_2^\circ = -(-2.5F) = 2.5F

Now, add Reaction 1 and Reversed Reaction 2: (MnO4+8H++5eMn2++4H2O)(MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) ++ (Mn2++2H2OMnO2+4H++2e)(Mn^{2+} + 2H_2O \rightarrow MnO_2 + 4H^+ + 2e^-)

MnO4+(84)H++(52)e+(24)H2OMnO2MnO_4^- + (8-4)H^+ + (5-2)e^- + (2-4)H_2O \rightarrow MnO_2 MnO4+4H++3eMnO2+2H2OMnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O This is exactly Reaction 3.

Since Gibbs free energy is an additive property, ΔG3\Delta G_3^\circ can be calculated as: ΔG3=ΔG1+ΔG2,reversed\Delta G_3^\circ = \Delta G_1^\circ + \Delta G_{2,reversed}^\circ ΔG3=7.5F+2.5F\Delta G_3^\circ = -7.5F + 2.5F ΔG3=5.0F\Delta G_3^\circ = -5.0F

The problem states that ΔG\Delta G^\circ for this half-cell is -xF. Comparing xF-xF with 5.0F-5.0F: xF=5.0F-xF = -5.0F x=5.0x = 5.0

The final answer is 5\boxed{5}.

Explanation: The standard Gibbs free energy change (ΔG\Delta G^\circ) is an additive property. We are given standard electrode potentials (EE^\circ) for two half-reactions: MnO4/Mn2+MnO_4^-/Mn^{2+} and MnO2/Mn2+MnO_2/Mn^{2+}. We need to find ΔG\Delta G^\circ for the MnO4/MnO2MnO_4^-/MnO_2 half-reaction. We convert each EE^\circ into ΔG\Delta G^\circ using ΔG=nFE\Delta G^\circ = -nFE^\circ. Then, we manipulate the given half-reactions to obtain the desired half-reaction and sum their corresponding ΔG\Delta G^\circ values.

  1. For MnO4+8H++5eMn2++4H2OMnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O, ΔG1=5F(1.5V)=7.5F\Delta G_1^\circ = -5F(1.5V) = -7.5F.
  2. For MnO2+4H++2eMn2++2H2OMnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O, ΔG2=2F(1.25V)=2.5F\Delta G_2^\circ = -2F(1.25V) = -2.5F. To get MnO4MnO2MnO_4^- \rightarrow MnO_2, we subtract the second reaction from the first (or add the reverse of the second reaction). The target reaction is MnO4+4H++3eMnO2+2H2OMnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O. ΔGtarget=ΔG1ΔG2=7.5F(2.5F)=7.5F+2.5F=5.0F\Delta G^\circ_{target} = \Delta G_1^\circ - \Delta G_2^\circ = -7.5F - (-2.5F) = -7.5F + 2.5F = -5.0F. Given ΔG=xF\Delta G^\circ = -xF, therefore x=5.0x = 5.0.