Solveeit Logo

Question

Question: If $\Delta = \begin{vmatrix} 1 & 3\cos\theta & 1 \\ \sin\theta & 1 & 3\cos\theta \\ 1 & \sin\theta &...

If Δ=13cosθ1sinθ13cosθ1sinθ1\Delta = \begin{vmatrix} 1 & 3\cos\theta & 1 \\ \sin\theta & 1 & 3\cos\theta \\ 1 & \sin\theta & 1 \end{vmatrix}, then maximum value of Δ\Delta is:

A

1

B

4

C

9

D

10

Answer

10

Explanation

Solution

To find the maximum value of Δ\Delta, we first expand the determinant:

Δ=1(13sinθcosθ)3cosθ(sinθ3cosθ)+1(sin2θ1)\Delta = 1(1 - 3\sin\theta\cos\theta) - 3\cos\theta(\sin\theta - 3\cos\theta) + 1(\sin^2\theta - 1) Δ=13sinθcosθ3sinθcosθ+9cos2θ+sin2θ1\Delta = 1 - 3\sin\theta\cos\theta - 3\sin\theta\cos\theta + 9\cos^2\theta + \sin^2\theta - 1 Δ=sin2θ6sinθcosθ+9cos2θ\Delta = \sin^2\theta - 6\sin\theta\cos\theta + 9\cos^2\theta Δ=(sinθ3cosθ)2\Delta = (\sin\theta - 3\cos\theta)^2

To maximize Δ\Delta, we need to maximize sinθ3cosθ|\sin\theta - 3\cos\theta|. The maximum value of Asinθ+BcosθA\sin\theta + B\cos\theta is A2+B2\sqrt{A^2 + B^2}. In this case, A=1A = 1 and B=3B = -3, so the maximum value of sinθ3cosθ\sin\theta - 3\cos\theta is 12+(3)2=10\sqrt{1^2 + (-3)^2} = \sqrt{10}.

Therefore, the maximum value of Δ\Delta is (10)2=10(\sqrt{10})^2 = 10.