Solveeit Logo

Question

Question: If D.C's of two liens satisfy the relations \(3 l + m + 5 n = 0\) and \(6 m n - 2 n l + 5 l m = 0\...

If D.C's of two liens satisfy the relations 3l+m+5n=03 l + m + 5 n = 0 and 6mn2nl+5lm=06 m n - 2 n l + 5 l m = 0, the angle between them is

A

Cos1(16)\operatorname { Cos } ^ { - 1 } \left( \frac { 1 } { 6 } \right)

B

Cos1(13)\operatorname { Cos } ^ { - 1 } \left( \frac { 1 } { 3 } \right)

C

π2\frac { \pi } { 2 }

D

Cos1(34)\operatorname { Cos } ^ { - 1 } \left( \frac { 3 } { 4 } \right)

Answer

Cos1(16)\operatorname { Cos } ^ { - 1 } \left( \frac { 1 } { 6 } \right)

Explanation

Solution

Eliminating m from the given relations

we get l2+3ln+2n2=0l ^ { 2 } + 3 \ln + 2 n ^ { 2 } = 0

i.e.(l+2n)(l+n)=0( l + 2 n ) ( l + n ) = 0 ;

i.e. l2=n1\frac { l } { - 2 } = \frac { n } { 1 }or

Hence using 1st leation l2=m1=n1\frac { l } { - 2 } = \frac { m } { 1 } = \frac { n } { 1 }or l1=m2=n1\frac { l } { - 1 } = \frac { m } { - 2 } = \frac { n } { 1 } hold. The angle between these lines is given by

cosθ=22+14+1+11+4+1=16\cos \theta = \frac { 2 - 2 + 1 } { \sqrt { 4 + 1 + 1 } \sqrt { 1 + 4 + 1 } } = \frac { 1 } { 6 }