Question
Question: If $D_r = \begin{vmatrix} \frac{2}{2r-1} & 3 \\ 0 & \frac{1}{2r+1} \end{vmatrix}$ then $\sum_{r=1}^{...
If Dr=2r−12032r+11 then ∑r=1nDr equals

A
2n+1n
B
2n+1n
C
2n+12n
D
2n+12n−1
Answer
2n+12n
Explanation
Solution
Given
Dr=2r−12032r+11,its determinant is
Dr=(2r−1)(2r+1)2.Step 1: Write the sum:
r=1∑nDr=r=1∑n(2r−1)(2r+1)2.Step 2: Use partial fractions: Assume
(2r−1)(2r+1)2=2r−1A+2r+1B.Multiplying through by (2r−1)(2r+1):
2=A(2r+1)+B(2r−1).Equate coefficients:
- For r: 2A+2B=0⟹A=−B.
- Constant term: A−B=2. Substituting A=−B, we get −B−B=2⇒−2B=2⇒B=−1, hence A=1.
Thus,
(2r−1)(2r+1)2=2r−11−2r+11.Step 3: Form the telescoping sum:
r=1∑n(2r−11−2r+11).Writing out the first few terms:
(11−31)+(31−51)+⋯+(2n−11−2n+11).Most terms cancel, leaving:
=11−2n+11=1−2n+11=2n+12n.