Solveeit Logo

Question

Question: If $ \frac{dy}{dx} + 2y \tan x = \sin x $ and $ y = 0 $, when $ x = \frac{\pi}{3} $, show that the m...

If dydx+2ytanx=sinx\frac{dy}{dx} + 2y \tan x = \sin x and y=0y = 0, when x=π3x = \frac{\pi}{3}, show that the maximum value of yy is 13\frac{1}{3}.

Answer

The maximum value of y is calculated to be 18\frac{1}{8}. The question asks to show that the maximum value is 13\frac{1}{3}. Based on the derivation, the statement that the maximum value is 13\frac{1}{3} is incorrect. The correct maximum value is 18\frac{1}{8}.

Explanation

Solution

The given differential equation is dydx+2ytanx=sinx\frac{dy}{dx} + 2y \tan x = \sin x. This is a first-order linear differential equation. The integrating factor (I.F.) is e2tanxdx=e2lnsecx=sec2xe^{\int 2 \tan x dx} = e^{2 \ln |\sec x|} = \sec^2 x. The general solution is ysec2x=sec2xsinxdx=secxtanxdx=secx+Cy \sec^2 x = \int \sec^2 x \sin x dx = \int \sec x \tan x dx = \sec x + C. Applying the initial condition y=0y=0 when x=π3x = \frac{\pi}{3}, we get 0sec2(π3)=sec(π3)+C0 \cdot \sec^2\left(\frac{\pi}{3}\right) = \sec\left(\frac{\pi}{3}\right) + C, which simplifies to 0=2+C0 = 2 + C, so C=2C = -2. The specific solution is ysec2x=secx2y \sec^2 x = \sec x - 2, or y=secx2sec2x=cosx2cos2xy = \frac{\sec x - 2}{\sec^2 x} = \cos x - 2 \cos^2 x. To find the maximum value of yy, let u=cosxu = \cos x. Then y(u)=u2u2y(u) = u - 2u^2. This is a quadratic function whose maximum occurs at u=12(2)=14u = -\frac{1}{2(-2)} = \frac{1}{4}. The maximum value of yy is ymax=142(14)2=14216=1418=18y_{max} = \frac{1}{4} - 2\left(\frac{1}{4}\right)^2 = \frac{1}{4} - \frac{2}{16} = \frac{1}{4} - \frac{1}{8} = \frac{1}{8}. The question states that the maximum value is 13\frac{1}{3}, but the calculation shows it is 18\frac{1}{8}.