Question
Question: If \({D_P} = \left| {\begin{array}{*{20}{c}} P&{15}&8 \\\ {{P^2}}&{35}&9 \\\ {{P^3}}&{...
If {D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\\
{{P^2}}&{35}&9 \\\
{{P^3}}&{25}&{10}
\end{array}} \right|, then D1+D2+D3+D4+D5 is equal to
A. -29000
B. -25000
C. 25000
D. None of these
Solution
To find the value of D1+D2+D3+D4+D5, we first need to solve determinant {D_P} = \left| {\begin{array}{*{20}{c}} P&{15}&8 \\\ {{P^2}}&{35}&9 \\\ {{P^3}}&{25}&{10} \end{array}} \right| and find its value. After finding its value in terms of P, we need to substitute P=1,2,3,4,5 and add all those values to get our answer.
Complete step by step answer:
In this question, we are given a determinant with variable P and we need to find out the value of D1+D2+D3+D4+D5.
Given determinant: {D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\\
{{P^2}}&{35}&9 \\\
{{P^3}}&{25}&{10}
\end{array}} \right|
Now, first of all we will find the value of the given determinant and then substitute the value of P with 1, 2, 3, 4 and 5 one by one and add those values.
Therefore, we get
{D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\\
{{P^2}}&{35}&9 \\\
{{P^3}}&{25}&{10}
\end{array}} \right| = P\left| {\begin{array}{*{20}{c}}
{35}&9 \\\
{25}&{10}
\end{array}} \right| - 15\left| {\begin{array}{*{20}{c}}
{{P^2}}&9 \\\
{{P^3}}&{10}
\end{array}} \right| + 8\left| {\begin{array}{*{20}{c}}
{{P^2}}&{35} \\\
{{P^3}}&{25}
\end{array}} \right|
DP=P(35×10−25×9)−15(P2×10−P3×9)+8(P2×25−P3×35) ⇒DP=P(350−225)−15(10P2−9P3)+8(25P2−35P3) ⇒DP=125P−150P2+135P3+200P2−280P3 ⇒DP=125P+50P2−145P3
Hence, we have found the value of the given determinant and now we need to substitute P=1,2,3,4,5 and add those results.
Therefore, For P=1:
DP=125P+50P2−145P3 ⇒D1=125(1)+50(1)2−145(1)3 ⇒D1=125+50−145 ⇒D1=30
For P=2:
DP=125P+50P2−145P3 ⇒D2=125(2)+50(2)2−145(2)3 ⇒D2=250+200−1160 ⇒D2=−710
For P=3:
DP=125P+50P2−145P3 ⇒D3=125(3)+50(3)2−145(3)3 ⇒D3=375+450−3915 ⇒D3=−3090
For P=4:
DP=125P+50P2−145P3 ⇒D4=125(4)+50(4)2−145(4)3 ⇒D4=500+800−9280 ⇒D4=−7980
For P=5:
DP=125P+50P2−145P3 ⇒D5=125(5)+50(5)2−145(5)3 ⇒D5=625+1250−18125 ⇒D5=−16250
Therefore, we have all the values we need and now we need to just add them. Therefore, we get
D1+D2+D3+D4+D5=30−710−3090−7980−16250 ∴D1+D2+D3+D4+D5=−28000
Hence, the correct answer is option D.
Note: We can also solve this question using the following method.
\Rightarrow {D_P} = \left| {\begin{array}{*{20}{c}}
P&{15}&8 \\\
{{P^2}}&{35}&9 \\\
{{P^3}}&{25}&{10}
\end{array}} \right|
Substitute P=1,2,3,4,5. Therefore, we get
For P=1:
\Rightarrow {D_1} = \left| {\begin{array}{*{20}{c}}
1&{15}&8 \\\
{{1^2}}&{35}&9 \\\
{{1^3}}&{25}&{10}
\end{array}} \right| \\\
\Rightarrow {D_1} = 1\left( {350 - 225} \right) - 15\left( {10 - 9} \right) + 8\left( {25 - 35} \right) \\\
\Rightarrow {D_1} = 125 - 15 - 80 \\\
\Rightarrow {D_1} = 30 \\\
For P=2:
\Rightarrow {D_2} = \left| {\begin{array}{*{20}{c}}
2&{15}&8 \\\
{{2^2}}&{35}&9 \\\
{{2^3}}&{25}&{10}
\end{array}} \right| \\\
\Rightarrow {D_2} = 2\left( {350 - 225} \right) - 15\left( {40 - 72} \right) + 8\left( {100 - 280} \right) \\\
\Rightarrow {D_2} = 250 + 480 - 1440 \\\
\Rightarrow {D_2} = - 710 \\\
For P=3:
\Rightarrow {D_3} = \left| {\begin{array}{*{20}{c}}
3&{15}&8 \\\
{{3^2}}&{35}&9 \\\
{{3^3}}&{25}&{10}
\end{array}} \right| \\\
\Rightarrow {D_3} = 3\left( {350 - 225} \right) - 15\left( {90 - 243} \right) + 8\left( {225 - 945} \right) \\\
\Rightarrow {D_3} = 375 + 2295 - 5760 \\\
\Rightarrow {D_3} = - 3090 \\\
For P=4:
\Rightarrow {D_4} = \left| {\begin{array}{*{20}{c}}
4&{15}&8 \\\
{{4^2}}&{35}&9 \\\
{{4^3}}&{25}&{10}
\end{array}} \right| \\\
\Rightarrow {D_4} = 4\left( {350 - 225} \right) - 15\left( {160 - 576} \right) + 8\left( {400 - 2240} \right) \\\
\Rightarrow {D_4} = 500 + 6240 - 14720 \\\
\Rightarrow {D_4} = - 7980 \\\
For P=5:
\Rightarrow {D_5} = \left| {\begin{array}{*{20}{c}}
5&{15}&8 \\\
{{5^2}}&{35}&9 \\\
{{5^3}}&{25}&{10}
\end{array}} \right| \\\
\Rightarrow {D_5} = 5\left( {350 - 225} \right) - 15\left( {250 - 1125} \right) + 8\left( {625 - 4375} \right) \\\
\Rightarrow {D_5} = 625 + 13125 - 30000 \\\
\Rightarrow {D_5} = - 16250 \\\
Therefore,
⇒D1+D2+D3+D4+D5=30−710−3090−7980−16250 ∴D1+D2+D3+D4+D5=−28000