Solveeit Logo

Question

Question: If D = \(\left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{...

If D = a1b1c1a2b2c2a3b3c3\left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right| and D´ =a1+pb1b1+qc1c1+ra1a2+pb2b2+qc2c2+ra2a3+pb3b3+qc3c3+ra3\left| \begin{matrix} a_{1} + pb_{1} & b_{1} + qc_{1} & c_{1} + ra_{1} \\ a_{2} + pb_{2} & b_{2} + qc_{2} & c_{2} + ra_{2} \\ a_{3} + pb_{3} & b_{3} + qc_{3} & c_{3} + ra_{3} \end{matrix} \right| then

A

D´ = D(1 + pqr)

B

D´ = D

C

D´ = D(1 – pqr)

D

D´ = D(1 + p + q + r)

Answer

D´ = D(1 + pqr)

Explanation

Solution

D´ = a1b1c1a2b2c2a3b3c3\left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right|+ pqr b1c1a1b2c2a2b3c3a3\left| \begin{matrix} b_{1} & c_{1} & a_{1} \\ b_{2} & c_{2} & a_{2} \\ b_{3} & c_{3} & a_{3} \end{matrix} \right|

(All other determinants vanish)

D´ = (1 + pqr) D