Question
Question: If D = \(\left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{...
If D = a1a2a3b1b2b3c1c2c3 and D´ =a1+pb1a2+pb2a3+pb3b1+qc1b2+qc2b3+qc3c1+ra1c2+ra2c3+ra3 then
A
D´ = D(1 + pqr)
B
D´ = D
C
D´ = D(1 – pqr)
D
D´ = D(1 + p + q + r)
Answer
D´ = D(1 + pqr)
Explanation
Solution
D´ = a1a2a3b1b2b3c1c2c3+ pqr b1b2b3c1c2c3a1a2a3
(All other determinants vanish)
D´ = (1 + pqr) D