Solveeit Logo

Question

Question: If D, E, F be the middle points of the sides BC, CA and AB of the triangle ABC, then \(\overset{\rig...

If D, E, F be the middle points of the sides BC, CA and AB of the triangle ABC, then AD+BE+CF\overset{\rightarrow}{AD} + \overset{\rightarrow}{BE} + \overset{\rightarrow}{CF} is

A

A zero vector

B

A unit vector

C

0

D

None of these

Answer

A zero vector

Explanation

Solution

AD=ODOA=b+c2a=b+c2a2\overset{\rightarrow}{AD} = \overset{\rightarrow}{OD} - \overset{\rightarrow}{OA} = \frac{\mathbf{b} + \mathbf{c}}{2} - \mathbf{a} = \frac{\mathbf{b} + \mathbf{c} - 2\mathbf{a}}{2},

(where OO is the origin for reference)

Similarly, BE=OEOB=c+a2b=c+a2b2\overset{\rightarrow}{BE} = \overset{\rightarrow}{OE} - \overset{\rightarrow}{OB} = \frac{\mathbf{c} + \mathbf{a}}{2} - \mathbf{b} = \frac{\mathbf{c} + \mathbf{a} - 2\mathbf{b}}{2} and

CF=a+b2c2\overset{\rightarrow}{CF} = \frac{\mathbf{a} + \mathbf{b} - 2\mathbf{c}}{2}.

Now, AD+BE+CF\overset{\rightarrow}{AD} + \overset{\rightarrow}{BE} + \overset{\rightarrow}{CF}

=b+c2a2+c+a2b2+a+b2c2=0= \frac{\mathbf{b} + \mathbf{c} - 2\mathbf{a}}{2} + \frac{\mathbf{c} + \mathbf{a} - 2\mathbf{b}}{2} + \frac{\mathbf{a} + \mathbf{b} - 2\mathbf{c}}{2} = \mathbf{0}.