Solveeit Logo

Question

Mathematics Question on 3D Geometry

If d1d_1 is the shortest distance between the lines x+12=y112=z17andx17=y+82=z45,\frac{x+1}{2} = \frac{y-1}{-12} = \frac{z-1}{-7} \quad \text{and} \quad \frac{x-1}{7} = \frac{y+8}{2} = \frac{z-4}{5}, and d2d_2 is the shortest distance between the lines x12=y21=z63andx+21=y+22=z16,\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{-3} \quad \text{and} \quad \frac{x+2}{1} = \frac{y+2}{2} = \frac{z-1}{6}, then the value of 323d1d2\frac{32\sqrt{3}d_1}{d_2} is:

Answer

To find d 1, the shortest distance between the lines L 1 and L 2:

L 1 : x+12=y112=z1\frac{x + 1}{2} = \frac{y - 1}{-12} = \frac{z}{1}, L 2 : x17=y+82=z45\frac{x - 1}{-7} = \frac{y + 8}{2} = \frac{z - 4}{5}

Using the formula for the distance between two skew lines d=(a2a1)×(b1×b2)b1×b2d = \frac{|(\vec{a_2} - \vec{a_1}) \times (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|}, we calculate:

d1=2d_1 = 2

Similarly, to find d 2 for lines L 3 and L 4:

L 3 : x12=y21=z63\frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z - 6}{-3}, L 4 : x+21=y+21=z16\frac{x + 2}{1} = \frac{y + 2}{1} = \frac{z - 1}{6}

we get: d2=123d_2 = \frac{12}{\sqrt{3}}

Finally,

323d1d2=323×2123=16\frac{32 \sqrt{3} d_1}{d_2} = \frac{32 \sqrt{3} \times 2}{\frac{12}{\sqrt{3}}} = 16