Question
Question: If curves \(\frac{x^{2}}{a^{2}}\)+ \(\frac{y^{2}}{b^{2}}\) = 1 and \(\frac{x^{2}}{\mathcal{l}^{2}}\)...
If curves a2x2+ b2y2 = 1 and l2x2 – m2y2 = 1 intersect
orthogonal then –
A
a2 + b2 = l2 + m2
B
a2 – b2= l2 – m2
C
a2 – b2= l2 + m2
D
a2 + b2= l2 – m2
Answer
a2 – b2= l2 + m2
Explanation
Solution
m1. m2 = –1 .......(i)
and a2x2+ b2y2 = l2x2 – m2x2 .......(ii)
Now compare y2x2 from both the equation.