Solveeit Logo

Question

Question: If C<sub>r</sub> = \(\left( \begin{aligned} & n \\ & r \end{aligned} \right)\), then \(\sum_{r = 1...

If Cr = (nr)\left( \begin{aligned} & n \\ & r \end{aligned} \right), then r=1n(1)r1Crr\sum_{r = 1}^{n}{( - 1)^{r - 1}\frac{C_{r}}{r}} =

A

0

B

1

C

r=1n1r\sum_{r = 1}^{n}\frac{1}{r}

D

r=1n(1)r1r\sum_{r = 1}^{n}\frac{( - 1)^{r - 1}}{r}

Answer

r=1n1r\sum_{r = 1}^{n}\frac{1}{r}

Explanation

Solution

1(1x)nx\frac{1 - (1 - x)^{n}}{x} = r=1n(1)n1Crxr1\sum_{r = 1}^{n}{( - 1)^{n - 1}C_{r}x^{r - 1}}

Integrating between 0 and 1 yields the desired sum r=1n1r\sum_{r = 1}^{n}\frac{1}{r}