Solveeit Logo

Question

Question: If \(\csc \theta +\cot \theta =p\) then prove that \(\cos \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}\)...

If cscθ+cotθ=p\csc \theta +\cot \theta =p then prove that cosθ=p21p2+1\cos \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}

Explanation

Solution

Hint: We have been given the value of p so we will start solving the question from RHS and then show that it is equal to LHS using the information given in question and from that we will find the value of p2{{p}^{2}} and then we substitute that value of p2{{p}^{2}} in p21p2+1\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1} and then by using some trigonometric formula we will show that it is equal to cosθ\cos \theta .

Complete step-by-step solution -
Let’s start our solution.
We have been given cscθ+cotθ=p\csc \theta +\cot \theta =p
Now taking square on both the sides we get,
p2=(cscθ+cotθ)2{{p}^{2}}={{\left( \csc \theta +\cot \theta \right)}^{2}}
Now using the formula (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab we get,
p2=csc2θ+cot2θ+2cscθcotθ{{p}^{2}}={{\csc }^{2}}\theta +{{\cot }^{2}}\theta +2\csc \theta \cot \theta
Now for p21{{p}^{2}}-1, we will use csc2θ=1+cot2θ{{\csc }^{2}}\theta =1+{{\cot }^{2}}\theta and we get p21{{p}^{2}}-1 as,
=csc2θ+cot2θ+2cscθcotθ1 =1+cot2θ+cot2θ+2cscθcotθ1 =2cot2θ+2cscθcotθ..............(1) \begin{aligned} & ={{\csc }^{2}}\theta +{{\cot }^{2}}\theta +2\csc \theta \cot \theta -1 \\\ & =1+{{\cot }^{2}}\theta +{{\cot }^{2}}\theta +2\csc \theta \cot \theta -1 \\\ & =2{{\cot }^{2}}\theta +2\csc \theta \cot \theta ..............(1) \\\ \end{aligned}
Now for p2+1{{p}^{2}}+1, we will use cot2θ=csc2θ1{{\cot }^{2}}\theta ={{\csc }^{2}}\theta -1 and we get p2+1{{p}^{2}}+1 as,
=csc2θ+cot2θ+2cscθcotθ+1 =csc2θ+csc2θ1+2cscθcotθ+1 =2csc2θ+2cscθcotθ............(2) \begin{aligned} & ={{\csc }^{2}}\theta +{{\cot }^{2}}\theta +2\csc \theta \cot \theta +1 \\\ & ={{\csc }^{2}}\theta +{{\csc }^{2}}\theta -1+2\csc \theta \cot \theta +1 \\\ & =2{{\csc }^{2}}\theta +2\csc \theta \cot \theta ............(2) \\\ \end{aligned}
Now for p21p2+1\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}, substituting the value of p21{{p}^{2}}-1 and p2+1{{p}^{2}}+1 from (1) and (2) we get,
=2cot2θ+2cscθcotθ2csc2θ+2cscθcotθ =2cotθ(cotθ+cscθ)2cscθ(cotθ+cscθ) =cotθcscθ \begin{aligned} & =\dfrac{2{{\cot }^{2}}\theta +2\csc \theta \cot \theta }{2{{\csc }^{2}}\theta +2\csc \theta \cot \theta } \\\ & =\dfrac{2\cot \theta \left( \cot \theta +\csc \theta \right)}{2\csc \theta \left( \cot \theta +\csc \theta \right)} \\\ & =\dfrac{\cot \theta }{\csc \theta } \\\ \end{aligned}
Now we know that cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } using these formula we get,
=cosθsinθ1sinθ =cosθ \begin{aligned} & =\dfrac{\dfrac{\cos \theta }{\sin \theta }}{\dfrac{1}{\sin \theta }} \\\ & =\cos \theta \\\ \end{aligned}
Hence we have proved that cosθ=p21p2+1\cos \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}.

Note: The formula that we have used cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } is very important and must be kept in mind. The most important step that we have used here was in p21p2+1\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1} , for p21{{p}^{2}}-1 we have used csc2θ=1+cot2θ{{\csc }^{2}}\theta =1+{{\cot }^{2}}\theta because to cancel the number 1, and for the same reason we have used cot2θ=csc2θ1{{\cot }^{2}}\theta ={{\csc }^{2}}\theta -1 for p2+1{{p}^{2}}+1 . So, this point must be clear why we are using the same formula in different ways to get the answer.