Solveeit Logo

Question

Question: If \[\csc A + \sec A = \csc B + \sec B\] then \[\tan A\tan B\] is equal to a. \[\tan \left( {\dfra...

If cscA+secA=cscB+secB\csc A + \sec A = \csc B + \sec B then tanAtanB\tan A\tan B is equal to
a. tan(A+B2)\tan \left( {\dfrac{{A + B}}{2}} \right)
b. cot(A+B2)\cot \left( {\dfrac{{A + B}}{2}} \right)
c. sin(A+B2)\sin \left( {\dfrac{{A + B}}{2}} \right)
d. cos(A+B2)\cos \left( {\dfrac{{A + B}}{2}} \right)

Explanation

Solution

Here we are asked to find the value of the expression tanAtanB\tan A\tan B by using the given expression. The given expression can be expanded using the standard trigonometric identities. Then it can be simplified to find the required value. After finding the value we have to choose the correct option from the given options.
Formula: Trigonometric identities that we will be using in this problem:
cscθ=1sinθ\csc \theta = \dfrac{1}{{\sin \theta }}
secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)

Complete step by step solution:
We aim to find the value of tanAtanB\tan A\tan B using the given expression cscA+secA=cscB+secB\csc A + \sec A = \csc B + \sec B .
First, let us consider the given expression cscA+secA=cscB+secB\csc A + \sec A = \csc B + \sec B .
Let us re-arrange the given expression for our convenience.
secAsecB=cscBcscA\sec A - \sec B = \csc B - \csc A
Let us expand the above expression using the formula cscθ=1sinθ\csc \theta = \dfrac{1}{{\sin \theta }}andsecθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }} . Here the angles are AA and BB . Thus, we get
\sec A - \sec B = \csc B - \csc A$$$$ \Rightarrow \dfrac{1}{{\cos A}} + \dfrac{1}{{\cos B}} = \dfrac{1}{{\sin A}} + \dfrac{1}{{\sin B}}
Now let us simplify the above expression.
cosBcosAcosAcosB=sinAsinBsinAsinB\Rightarrow \dfrac{{\cos B - \cos A}}{{\cos A\cos B}} = \dfrac{{\sin A - \sin B}}{{\sin A\sin B}}
Now let us take the numerator of the left-hand side to the denominator of the right-hand side and the denominator of the right-hand side to the numerator of the left-hand side.
sinAsinBcosAcosB=sinAsinBcosBcosA\Rightarrow \dfrac{{\sin A\sin B}}{{\cos A\cos B}} = \dfrac{{\sin A - \sin B}}{{\cos B - \cos A}}
Now let us rearrange the left-hand side of the above equation for our convenience.
sinAcosA×sinBcosB=sinAsinBcosBcosA\Rightarrow \dfrac{{\sin A}}{{\cos A}} \times \dfrac{{\sin B}}{{\cos B}} = \dfrac{{\sin A - \sin B}}{{\cos B - \cos A}}
As we know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} we can write the above equation as
tanAtanB=sinAsinBcosBcosA\Rightarrow \tan A\tan B = \dfrac{{\sin A - \sin B}}{{\cos B - \cos A}}
Since here the angles are AA and BB .
Now let us simplify the right-hand side of the above equation.
We already know that from the trigonometric equation, sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) and cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) . Using these identities in the above equation we get
tanAtanB=2cos(A+B2)sin(AB2)2sin(A+B2)sin(AB2)\Rightarrow \tan A\tan B = \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)}}
On simplifying the above equation, we get
tanAtanB=cos(A+B2)sin(A+B2)\Rightarrow \tan A\tan B = \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)}}
Now using the formula cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} on the right-hand side of the above equation we get
tanAtanB=cot(A+B2)\Rightarrow \tan A\tan B = \cot \left( {\dfrac{{A + B}}{2}} \right)
Since here the angle is (A+B2)\left( {\dfrac{{A + B}}{2}} \right)
Thus, we got the value of the expression tanAtanB\tan A\tan B as cot(A+B2)\cot \left( {\dfrac{{A + B}}{2}} \right) . Now let us see the options for a correct answer.
Option (a) tan(A+B2)\tan \left( {\dfrac{{A + B}}{2}} \right) is an incorrect answer as we got the value cot(A+B2)\cot \left( {\dfrac{{A + B}}{2}} \right) from our calculation.
Option (b) cot(A+B2)\cot \left( {\dfrac{{A + B}}{2}} \right) is the correct answer as we got the same value in our calculation above.
Option (c) sin(A+B2)\sin \left( {\dfrac{{A + B}}{2}} \right) is an incorrect answer as we got the value cot(A+B2)\cot \left( {\dfrac{{A + B}}{2}} \right) from our calculation.
Option (a) cos(A+B2)\cos \left( {\dfrac{{A + B}}{2}} \right) is an incorrect answer as we got the value cot(A+B2)\cot \left( {\dfrac{{A + B}}{2}} \right) from our calculation.
Hence, option (b) cot(A+B2)\cot \left( {\dfrac{{A + B}}{2}} \right) is the correct answer.

So, the correct answer is “Option b”.

Note: In this problem, we have used the formulas sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) andcosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) . These are derived as a result by using the standard formulas,
1. sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
2. sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin B
3. cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B
4. cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B