Solveeit Logo

Question

Question: If \(\cot\theta + \tan\theta = m\)and \(\sec\theta - \cos\theta = n,\) then which of the following i...

If cotθ+tanθ=m\cot\theta + \tan\theta = mand secθcosθ=n,\sec\theta - \cos\theta = n, then which of the following is correct

A

m(mn2)1/3n(nm2)1/3=1m(mn^{2})^{1/3} - n(nm^{2})^{1/3} = 1

B

m(m2n)1/3n(mn2)1/3=1m(m^{2}n)^{1/3} - n(mn^{2})^{1/3} = 1

C

n(mn2)1/3m(nm2)1/3=1n(mn^{2})^{1/3} - m(nm^{2})^{1/3} = 1

D

n(m2n)1/3m(mn2)1/3=1n(m^{2}n)^{1/3} - m(mn^{2})^{1/3} = 1

Answer

m(mn2)1/3n(nm2)1/3=1m(mn^{2})^{1/3} - n(nm^{2})^{1/3} = 1

Explanation

Solution

As given 1tanθ+tanθ=m1+tan2θ=mtanθ\frac{1}{\tan\theta} + \tan\theta = m \Rightarrow 1 + \tan^{2}\theta = m\tan\theta

sec2θ=mtanθ\Rightarrow \sec^{2}\theta = m\tan\theta …..(i)

and secθcosθ=nsec2θ1=nsecθ\sec\theta - \cos\theta = n \Rightarrow \sec^{2}\theta - 1 = n\sec\theta

tan2θ=nsecθ\Rightarrow \tan^{2}\theta = n\sec\theta

tan4θ=n2sec2θ=n2.mtanθ\Rightarrow \tan^{4}\theta = n^{2}\sec^{2}\theta = n^{2}.m\tan\theta {by (i)}

tan3θ=n2m,(tanθ0)\Rightarrow \tan^{3}\theta = n^{2}m,(\because\tan\theta \neq 0)

tanθ=(n2m)1/3\Rightarrow \tan\theta = (n^{2}m)^{1/3} …..(ii)

Also, sec2θ=mtanθ=m(n2m)1/3\sec^{2}\theta = m\tan\theta = m(n^{2}m)^{1/3} {by (i) and (ii)}

∴ Using the identity sec2θtan2θ=1\sec^{2}\theta - \tan^{2}\theta = 1

m(mn2)1/3(n2m)2/3=1\Rightarrow m(mn^{2})^{1/3} - (n^{2}m)^{2/3} = 1

m(mn2)1/3n(nm2)1/3=1.\Rightarrow m(mn^{2})^{1/3} - n(nm^{2})^{1/3} = 1.