Question
Mathematics Question on Trigonometric Ratios
If cot θ=87, evaluate:
(i) (1+cosθ)(1−cosθ)(1+sin θ)(1–sinθ)
(ii) cot2 θ
Answer
Let us consider a right triangle ABC, right-angled at point B
cot θ=ABBC=87
If BC is 7k, then AB will be 8k, where k is a positive integer.
Applying Pythagoras theorem in ΔABC, we obtain
AC2=AB2+BC2
=(8k)2+(7k)2
=64k2+49k2
=113k2
AC=113k
sin θ=ACAB=HypotenuseOpposite Side=113k8k=1138 and
cos θ=Hypotenuse Adjacent Side=ACBC=113k7k=1137
**(i) **(1+cosθ)(1−cosθ)(1+sinθ)(1–sinθ)=(1−cos2θ)(1−sin2θ)
=(1−(1137)2)(1−(113)28)
=1−113491−11364
=1136411349=6449
(ii) cot 2θ=(cot θ)2=(87)2=6449