Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios

If cot θ=78,cot\ \theta = \frac{7}{8}, evaluate:

(i) (1+sin θ)(1sinθ)(1+cosθ)(1cosθ)\frac{(1 + sin\ \theta)(1 – sin θ)}{(1+cos θ)(1-cos θ)}

(ii) cot2cot^2 θθ

Answer

Let us consider a right triangle ABC, right-angled at point B

If cot θ=7/8,evaluate:i$$1+sin θ$$1-sin θ/1+cos θ$$1-cos θ$$iicot2 θ
cot θ=BCAB=78cot\ θ = \frac{BC}{AB} = \frac{7}{8}

If BC is 7k, then AB will be 8k, where k is a positive integer.
Applying Pythagoras theorem in ΔABCΔABC, we obtain
AC2=AB2+BC2AC ^2 = AB ^2 + BC^ 2
=(8k)2+(7k)2= (8k) ^2 + (7k)^ 2
=64k2+49k2= 64k^ 2 + 49k ^2
=113k2= 113k^ 2
AC=113kAC =\sqrt{113} k

sin θ=ABAC=Opposite SideHypotenuse=8k113k=8113sin\ θ = \frac{AB}{AC} = \frac{\text{Opposite} \ \text{Side}}{\text{Hypotenuse} }=\frac{ 8k}{\sqrt{113} k} =\frac{ 8}{\sqrt{113}} and

cos θ=Adjacent  SideHypotenuse =BCAC=7k113k=7113cos\ θ =\frac{ \text{Adjacent}\ \text{ Side}}{\text{Hypotenuse }}= \frac{BC}{AC} =\frac{ 7k}{113 k} =\frac{ 7}{113}

**(i) **(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=(1sin2θ)(1cos2θ)\frac{(1 + sin θ)(1 – sin θ)}{(1+cos θ)(1-cos θ)}=\frac{(1-sin^2 θ)}{(1-cos^2 θ)}

=(1(8113)2)(1(7113)2)= \frac{(1-(\frac{8}{\sqrt{113})^2})}{(1-(\frac{ 7}{\sqrt{113}})^2)}

=164113149113=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}

=4911364113=4964=\frac{\frac{49}{113}}{\frac{64}{113}}=\frac{49}{64}


(ii) cot 2θ=(cot θ)2=(78)2=4964cot\ 2 θ = (cot\ θ) ^2 =(\frac{7}{8})^2=\frac{49}{64}