Question
Question: If \(\cot \theta = \dfrac{7}{8}\), evaluate 1\. \(\dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{...
If cotθ=87, evaluate
1. (1+cosθ)(1−cosθ)(1+sinθ)(1−sinθ)
2. cot2θ
Solution
Hint: Here we have to use the formulae of trigonometric ratio and pythagoras theorem to find the hypotenuse.
“Complete step-by-step answer:”
Given, cotθ=87
We know that by trigonometric ratio that cotθ=pbwhere (b=base, p=perpendicular)
⇒cotθ=87 = pb(∴p=8,b=7)
Now from Pythagoras theorem we find h=Hypotenuse,
∴h2=p2+b2 ⇒h2=82+72 ⇒h=64+49 ⇒h=113
And now we know that by trigonometric ratio,
sinθ=hp=1138 cosθ=hb=1137
For (i)
(1+cosθ)(1−cosθ)(1+sinθ)(1−sinθ)
We have a2−b2=(a+b)(a−b)
Similarly,
1−sin2θ=(1+sinθ)(1−sinθ) 1−cos2θ=(1+cosθ)(1−cosθ)
⇒(1+cosθ)(1−cosθ)(1+sinθ)(1−sinθ)=1−cos2θ1−sin2θ=1−(1137)21−(1138)2=(113−49)(113−64)=6449
For (ii)
Given,
cotθ=87
We have to find cot2θ
cot2θ=(cotθ)2=(87)2=6449
Note: Whenever such type of questions are given we can solve it by two way (i) trigonometric ratio (ii) by trigonometric identities