Solveeit Logo

Question

Question: If \(\cot \theta = \dfrac{7}{8}\), evaluate 1\. \(\dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{...

If cotθ=78\cot \theta = \dfrac{7}{8}, evaluate
1. (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)\dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}}
2. cot2θ{\cot ^2}\theta

Explanation

Solution

Hint: Here we have to use the formulae of trigonometric ratio and pythagoras theorem to find the hypotenuse.

“Complete step-by-step answer:”
Given, cotθ=78\cot \theta = \dfrac{7}{8}
We know that by trigonometric ratio that cotθ=bp\cot \theta = \dfrac{b}{p}where (b=base, p=perpendicular)
cotθ=78 = bp(p=8,b=7)\Rightarrow \cot \theta = \dfrac{7}{8}{\text{ = }}\dfrac{{\text{b}}}{{\text{p}}}(\therefore p = 8,b = 7)

Now from Pythagoras theorem we find h=Hypotenuse,
h2=p2+b2 h2=82+72 h=64+49 h=113  \therefore {h^2} = {p^2} + {b^2} \\\ \Rightarrow {h^2} = {8^2} + {7^2} \\\ \Rightarrow h = \sqrt {64 + 49} \\\ \Rightarrow h = \sqrt {113} \\\
And now we know that by trigonometric ratio,
sinθ=ph=8113 cosθ=bh=7113  \sin \theta = \dfrac{p}{h} = \dfrac{8}{{\sqrt {113} }} \\\ \cos \theta = \dfrac{b}{h} = \dfrac{7}{{\sqrt {113} }} \\\
For (i)
(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)\dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}}
We have a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
Similarly,
1sin2θ=(1+sinθ)(1sinθ) 1cos2θ=(1+cosθ)(1cosθ)  1 - {\sin ^2}\theta = (1 + \sin \theta )(1 - \sin \theta ) \\\ 1 - {\cos ^2}\theta = (1 + \cos \theta )(1 - \cos \theta ) \\\
(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=1sin2θ1cos2θ=1(8113)21(7113)2=(11364)(11349)=4964\Rightarrow \dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}} = \dfrac{{1 - {{\sin }^2}\theta }}{{1 - {{\cos }^2}\theta }} = \dfrac{{1 - {{\left( {\dfrac{8}{{\sqrt {113} }}} \right)}^2}}}{{1 - {{\left( {\dfrac{7}{{\sqrt {113} }}} \right)}^2}}} = \dfrac{{(113 - 64)}}{{(113 - 49)}} = \dfrac{{49}}{{64}}
For (ii)
Given,
cotθ=78\cot \theta = \dfrac{7}{8}
We have to find cot2θ{\cot ^2}\theta
cot2θ=(cotθ)2=(78)2=4964{\cot ^2}\theta = {(\cot \theta )^2} = {\left( {\dfrac{7}{8}} \right)^2} = \dfrac{{49}}{{64}}

Note: Whenever such type of questions are given we can solve it by two way (i) trigonometric ratio (ii) by trigonometric identities